2 resultados para Contrast.

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/ webcite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to provide the necessary methods to register and fuse the endo-epicardial signal intensity (SI) maps extracted from contrast-enhanced magnetic resonance imaging (ceMRI) with X-ray coronary ngiograms using an intrinsic registrationbased algorithm to help pre-planning and guidance of catheterization procedures. Fusion of angiograms with SI maps was treated as a 2D-3D pose estimation, where each image point is projected to a Plücker line, and the screw representation for rigid motions is minimized using a gradient descent method. The resultant transformation is applied to the SI map that is then projected and fused on each angiogram. The proposed method was tested in clinical datasets from 6 patients with prior myocardial infarction. The registration procedure is optionally combined with an iterative closest point algorithm (ICP) that aligns the ventricular contours segmented from two ventriculograms.