5 resultados para Continuous flow injection system, FIAlab 2600
em Universidad Politécnica de Madrid
Resumo:
A rapid, economic and sensitive chemiluminescent method involving flow-injection analysis was developed for the determination of dipyrone in pharmaceutical preparations. The method is based on the chemiluminescent reaction between quinolinic hydrazide and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. Principal chemical and physical variables involved in the flow-injection system were optimized using a modified simplex method. The variations in the quantum yield observed when dipyrone was present in the reaction medium were used to determine the concentration of this compound. The proposed method requires no preconcentration steps and reliably quantifies dipyrone over the linear range 1–50 µg/mL. In addition, a sample throughput of 85 samples/h is possible. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Most of the current evacuation plans are based on static signaling, fixed monitoring infrastructure, and limited user notification and feedback mechanisms. These facts lead to lower situation awareness, in the case event of an emergency, such as blocked emergency exits, while delaying the reaction time of individuals. In this context, we introduce the E-Flow communication system, which improves the user awareness by integrating personal, mobile and fixed devices with the existing monitoring infrastructure. Our system broadens the notification and monitoring alternatives, in real time, among, safety staff, end-users and evacuation related devices, such as sensors and actuators.
Resumo:
El autor ha trabajado como parte del equipo de investigación en mediciones de viento en el Centro Nacional de Energías Renovables (CENER), España, en cooperación con la Universidad Politécnica de Madrid y la Universidad Técnica de Dinamarca. El presente reporte recapitula el trabajo de investigación realizado durante los últimos 4.5 años en el estudio de las fuentes de error de los sistemas de medición remota de viento, basados en la tecnología lidar, enfocado al error causado por los efectos del terreno complejo. Este trabajo corresponde a una tarea del paquete de trabajo dedicado al estudio de sistemas remotos de medición de viento, perteneciente al proyecto de intestigación europeo del 7mo programa marco WAUDIT. Adicionalmente, los datos de viento reales han sido obtenidos durante las campañas de medición en terreno llano y terreno complejo, pertenecientes al también proyecto de intestigación europeo del 7mo programa marco SAFEWIND. El principal objetivo de este trabajo de investigación es determinar los efectos del terreno complejo en el error de medición de la velocidad del viento obtenida con los sistemas de medición remota lidar. Con este conocimiento, es posible proponer una metodología de corrección del error de las mediciones del lidar. Esta metodología está basada en la estimación de las variaciones del campo de viento no uniforme dentro del volumen de medición del lidar. Las variaciones promedio del campo de viento son predichas a partir de los resultados de las simulaciones computacionales de viento RANS, realizadas para el parque experimental de Alaiz. La metodología de corrección es verificada con los resultados de las simulaciones RANS y validadas con las mediciones reales adquiridas en la campaña de medición en terreno complejo. Al inicio de este reporte, el marco teórico describiendo el principio de medición de la tecnología lidar utilizada, es presentado con el fin de familiarizar al lector con los principales conceptos a utilizar a lo largo de este trabajo. Posteriormente, el estado del arte es presentado en donde se describe los avances realizados en el desarrollo de la la tecnología lidar aplicados al sector de la energía eólica. En la parte experimental de este trabajo de investigación se ha estudiado los datos adquiridos durante las dos campañas de medición realizadas. Estas campañas has sido realizadas en terreno llano y complejo, con el fin de complementar los conocimiento adquiridos en casa una de ellas y poder comparar los efectos del terreno en las mediciones de viento realizadas con sistemas remotos lidar. La primer campaña experimental se desarrollo en terreno llano, en el parque de ensayos de aerogeneradores H0vs0re, propiedad de DTU Wind Energy (anteriormente Ris0). La segunda campaña experimental se llevó a cabo en el parque de ensayos de aerogeneradores Alaiz, propiedad de CENER. Exactamente los mismos dos equipos lidar fueron utilizados en estas campañas, haciendo de estos experimentos altamente relevantes en el contexto de evaluación del recurso eólico. Un equipo lidar está basado en tecnología de onda continua, mientras que el otro está basado en tecnología de onda pulsada. La velocidad del viento fue medida, además de con los equipos lidar, con anemómetros de cazoletas, veletas y anemómetros verticales, instalados en mástiles meteorológicos. Los sensores del mástil meteorológico son considerados como las mediciones de referencia en el presente estudio. En primera instancia, se han analizado los promedios diez minútales de las medidas de viento. El objetivo es identificar las principales fuentes de error en las mediciones de los equipos lidar causadas por diferentes condiciones atmosféricas y por el flujo no uniforme de viento causado por el terreno complejo. El error del lidar ha sido estudiado como función de varias propiedades estadísticas del viento, como lo son el ángulo vertical de inclinación, la intensidad de turbulencia, la velocidad vertical, la estabilidad atmosférica y las características del terreno. El propósito es usar este conocimiento con el fin de definir criterios de filtrado de datos. Seguidamente, se propone una metodología para corregir el error del lidar causado por el campo de viento no uniforme, producido por la presencia de terreno complejo. Esta metodología está basada en el análisis matemático inicial sobre el proceso de cálculo de la velocidad de viento por los equipos lidar de onda continua. La metodología de corrección propuesta hace uso de las variaciones de viento calculadas a partir de las simulaciones RANS realizadas para el parque experimental de Alaiz. Una ventaja importante que presenta esta metodología es que las propiedades el campo de viento real, presentes en las mediciones instantáneas del lidar de onda continua, puede dar paso a análisis adicionales como parte del trabajo a futuro. Dentro del marco del proyecto, el trabajo diario se realizó en las instalaciones de CENER, con supervisión cercana de la UPM, incluyendo una estancia de 1.5 meses en la universidad. Durante esta estancia, se definió el análisis matemático de las mediciones de viento realizadas por el equipo lidar de onda continua. Adicionalmente, los efectos del campo de viento no uniforme sobre el error de medición del lidar fueron analíticamente definidos, después de asumir algunas simplificaciones. Adicionalmente, durante la etapa inicial de este proyecto se desarrollo una importante trabajo de cooperación con DTU Wind Energy. Gracias a esto, el autor realizó una estancia de 1.5 meses en Dinamarca. Durante esta estancia, el autor realizó una visita a la campaña de medición en terreno llano con el fin de aprender los aspectos básicos del diseño de campañas de medidas experimentales, el estudio del terreno y los alrededores y familiarizarse con la instrumentación del mástil meteorológico, el sistema de adquisición y almacenamiento de datos, así como de el estudio y reporte del análisis de mediciones. ABSTRACT The present report summarizes the research work performed during last 4.5 years of investigation on the sources of lidar bias due to complex terrain. This work corresponds to one task of the remote sensing work package, belonging to the FP7 WAUDIT project. Furthermore, the field data from the wind velocity measurement campaigns of the FP7 SafeWind project have been used in this report. The main objective of this research work is to determine the terrain effects on the lidar bias in the measured wind velocity. With this knowledge, it is possible to propose a lidar bias correction methodology. This methodology is based on an estimation of the wind field variations within the lidar scan volume. The wind field variations are calculated from RANS simulations performed from the Alaiz test site. The methodology is validated against real scale measurements recorded during an eight month measurement campaign at the Alaiz test site. Firstly, the mathematical framework of the lidar sensing principle is introduced and an overview of the state of the art is presented. The experimental part includes the study of two different, but complementary experiments. The first experiment was a measurement campaign performed in flat terrain, at DTU Wind Energy H0vs0re test site, while the second experiment was performed in complex terrain at CENER Alaiz test site. Exactly the same two lidar devices, based on continuous wave and pulsed wave systems, have been used in the two consecutive measurement campaigns, making this a relevant experiment in the context of wind resource assessment. The wind velocity was sensed by the lidars and standard cup anemometry and wind vanes (installed on a met mast). The met mast sensors are considered as the reference wind velocity measurements. The first analysis of the experimental data is dedicated to identify the main sources of lidar bias present in the 10 minute average values. The purpose is to identify the bias magnitude introduced by different atmospheric conditions and by the non-uniform wind flow resultant of the terrain irregularities. The lidar bias as function of several statistical properties of the wind flow like the tilt angle, turbulence intensity, vertical velocity, atmospheric stability and the terrain characteristics have been studied. The aim of this exercise is to use this knowledge in order to define useful lidar bias data filters. Then, a methodology to correct the lidar bias caused by non-uniform wind flow is proposed, based on the initial mathematical analysis of the lidar measurements. The proposed lidar bias correction methodology has been developed focusing on the the continuous wave lidar system. In a last step, the proposed lidar bias correction methodology is validated with the data of the complex terrain measurement campaign. The methodology makes use of the wind field variations obtained from the RANS analysis. The results are presented and discussed. The advantage of this methodology is that the wind field properties at the Alaiz test site can be studied with more detail, based on the instantaneous measurements of the CW lidar. Within the project framework, the daily basis work has been done at CENER, with close guidance and support from the UPM, including an exchange period of 1.5 months. During this exchange period, the mathematical analysis of the lidar sensing of the wind velocity was defined. Furthermore, the effects of non-uniform wind fields on the lidar bias were analytically defined, after making some assumptions for the sake of simplification. Moreover, there has been an important cooperation with DTU Wind Energy, where a secondment period of 1.5 months has been done as well. During the secondment period at DTU Wind Energy, an important introductory learning has taken place. The learned aspects include the design of an experimental measurement campaign in flat terrain, the site assessment study of obstacles and terrain conditions, the data acquisition and processing, as well as the study and reporting of the measurement analysis.
Resumo:
En esta Tesis se plantea una nueva forma de entender la evacuación apoyándonos en tecnologías existentes y accesibles que nos permitirán ver este proceso como un ente dinámico. Se trata de una metodología que implica no solo el uso de herramientas de análisis que permitan la definición de planes de evacuación en tiempo real, sino que también se apunta hacia la creación de una infraestructura física que permita alimentar con información actualizada al sistema de forma que, según la situación y la evolución de la emergencia, sea posible realizar planes alternativos que se adapten a las nuevas circunstancias. En base a esto, el sistema asimilará toda esa información y aportará soluciones que faciliten la toma de decisiones durante toda la evolución del incidente. Las aportaciones originales de esta Tesis son múltiples y muy variadas, pudiéndolas resumir en los siguientes puntos: 1. Estudio completo del estado del arte: a. Detección y análisis de diferentes proyectos a nivel internacional que de forma parcial tratan algunos aspectos desarrollados en la Tesis. b. Completo estudio a nivel mundial del software desarrollado total o parcialmente para la simulación del comportamiento humano y análisis de procesos de evacuación. Se ha generado una base de datos que cataloga de forma exhaustiva estas aplicaciones, permitiendo realizar un completo análisis y posibilitando la evolución futura de los contenidos de la misma. En la tesis se han analizado casi un centenar de desarrollos, pero el objetivo es seguir completando esta base de datos debido a la gran utilidad y a las importantes posibilidades que ofrece. 2. Desarrollo de un importante capítulo que trata sobre la posibilidad de utilizar entornos virtuales como alternativa intermedia al uso de simuladores y simulacros. En esta sección se divide en dos bloques: a. Ensayos en entornos reales y virtuales. b. Ensayos en entornos virtuales (pruebas realizadas con varios entornos virtuales). 3. Desarrollo de e-Flow net design: paquete de herramientas desarrolladas sobre Rhinoceros para el diseño de la red de evacuación basada en los elementos definidos en la tesis: Nodes, paths, Relations y Areas. 4. Desarrollo de e-Flow Simulator: Conjunto de herramientas que transforman Rhinoceros en un simulador 3D de comportamiento humano. Este simulador, de desarrollo propio, incorpora un novedoso algoritmo de comportamiento a nivel de individuo que incluye aspectos que no se han encontrado en otros simuladores. Esta herramienta permite realizar simulaciones programadas de grupos de individuos cuyo comportamiento se basa en el análisis del entorno y en la presencia de referencias dinámicas. Incluye otras importantes novedades como por ejemplo: herramientas para análisis de la señalización, elementos de señalización dinámica, incorporación sencilla de obstáculos, etc. También se ha creado una herramienta que posibilita la implementación del movimiento del propio escenario simulando la oscilación del mismo, con objeto de reflejar la influencia del movimiento del buque en el desplazamiento de los individuos. 5. En una fase avanzada del desarrollo, se incorporó la posibilidad de generar un vídeo de toda la simulación, momento a partir del cual, se han documentado todas las pruebas (y se continúan documentando) en una base de datos que recoge todas las características de las simulaciones, los problemas detectados, etc. Estas pruebas constituyen, en el momento en que se ha cerrado la redacción de la Tesis, un total de 81 GB de datos. Generación y análisis de rutas en base a la red de evacuación creada con e-Flow Net design y las simulaciones realizadas con e-Flow Net simulator. a. Análisis para la optimización de la configuración de la red en base a los nodos por área existentes. b. Definición de procesos previos al cálculo de rutas posibles. c. Cálculo de rutas: i. Análisis de los diferentes algoritmos que existen en la actualidad para la optimización de rutas. ii. Desarrollo de una nueva familia de algoritmos que he denominado “Minimum Decision Algorithm (MDA)”, siendo los algoritmos que componen esta familia: 1. MDA básico. 2. MDA mínimo. 3. MDA de no interferencia espacial. 4. MDA de expansión. 5. MDA de expansión ordenada para un único origen. 6. MDA de expansión ordenada. iii. Todos estos algoritmos se han implementado en la aplicación e-Flow creada en la Tesis para el análisis de rutas y que constituye el núcleo del Sistema de Ayuda al Capitán. d. Determinación de las alternativas para el plan de evacuación. Tras la definición de las rutas posibles, se describen diferentes procesos existentes de análisis por ponderación en base a criterios, para pasar finalmente a definir el método de desarrollo propio propuesto en esta Tesis y cuyo objetivo es responder en base a la población de rutas posibles obtenidas mediante los algoritmos MDA, qué combinación de rutas constituyen el Plan o Planes más adecuados para cada situación. La metodología creada para la selección de combinaciones de rutas que determinan un Plan completo, se basa en cuatro criterios básicos que tras su aplicación ofrecen las mejores alternativas. En esta fase también se incluye un complejo análisis de evolución temporal que incorpora novedosas definiciones y formulaciones. e. Derivado de la definición de la metodología creada en esta Tesis para la realización de los análisis de evolución temporal, se ha podido definir un nuevo teorema matemático que se ha bautizado como “Familia de cuadriláteros de área constante”. 7. Especificación de la infraestructura física del Sistema de Ayuda al Capitán: parte fundamental de sistema es la infraestructura física sobre la que se sustentaría. Esta infraestructura estaría compuesta por sensores, actuadores, aplicaciones para dispositivos móviles, etc. En este capítulo se analizan los diferentes elementos que la constituirían y las tecnologías implicadas. 8. Especificación de la infraestructura de servicios. 9. Creación del Blog Virtual Environments (http://epcinnova-virtualenvironments.blogspot.com.es/) en el que se han publicado todas las pruebas realizadas en el capítulo que analiza los entornos virtuales como alternativa a los simuladores y a los ensayos en laboratorio o los simulacros, incluyendo en muchos casos la posibilidad de que el visitante del blog pueda realizar la simulación en el entorno virtual. Este blog también incluye otras secciones que se han trabajado durante la Tesis: • Recopilación de diferentes entornos virtuales existentes. • Diagrama que recopila información sobre accidentes tanto en el ámbito marítimo como en el terrestre (en desarrollo). • Esquema propuesto para el acopio de información obtenida a partir de un simulacro. 10. Esta Tesis es la base para el proyecto e-Flow (nombre de una de las aplicaciones que desarrolladas en esta obra), un proyecto en el que el autor de esta Tesis ha trabajado como Project Manager. En el proyecto participa un consorcio de empresas y la UPM, y tiene como objetivo trasladar a la realidad gran parte de los planteamientos e ideas presentadas en esta Tesis. Este proyecto incluye el desarrollo de la infraestructura física y de servicios que permitirán, entre otras cosas, implementar en infraestructuras complejas una plataforma que posibilita la evacuación dinámica y un control ubicuo de los sistemas de monitorización y actuación implementados. En estos momentos se está finalizando el proyecto, cuyo objetivo final es la implementación de un piloto en un Hospital. También destacamos los siguientes avances a nivel de difusión científico-tecnológico: • Ponencia en el “52 congreso de la Ingeniería Naval en España” presentando un artículo “e-Flow- Sistema integral inteligente de soporte a la evacuación”. En este artículo se trata tanto el proyecto e-Flow del que soy Project Manager, como esta Tesis Doctoral, al ser temas estrechamente vinculados. En 2014 se publicó en dos números de la Revista Ingeniería Naval el artículo presentado a estas jornadas. • Co-autor en el artículo “E-Flow: A communication system for user notification in dynamic evacuation scenarios” presentado en el 7th International Conference on Ubicuous Computing & Ambient Intelligence (UCAMI) celebrado en Costa Rica. Por último, una de las aportaciones más interesantes, es la definición de un gran número de líneas de investigación futuras en base a todos los avances realizados en esta Tesis. ABSTRACT With this Thesis a new approach for understanding evacuation process is considered, taking advantage of the existing and open technologies that will allow this process to be interpreted as a dynamic entity. The methodology involves not only tools that allows on.-time evacuation plans, but also creates a physical insfrastructure that makes possible to feed the system with information on real time so, considering in each moment the real situation as well as the specific emergency development it will be feasible to generate alternative plans that responds to the current emergency situation. In this respect, the system will store all this information and will feedback with solutions that will help the decision making along the evacuation process. The innovative and singular contributions of this Thesis are numerous and rich, summarised as follows: 1.- Complete state-of-art study: a. Detection and analysis of different projects on an international level that, although partially, deal with some aspects developed in this Thesis. b. Thorough study at a international level of the developed software - total or partially done - for the simulation of the human behaviour and evacuation processes analysis. A database has been generated that classifies in detail these applications allowing to perform a full analysis and leading to future evolution of its contents. Within the Thesis work, almost a hundred of developments have been analysed but the purpose is to keep up updating this database due to the broad applications and possibilities that it involves. 2. Development of an important chapter that studies the possibility of using virtual scenarios as mid-term alternative for the use of simulations. This section is divided in two blocks: a. Trials in virtual and real scenarios b. Trials in virutal scenarios (trials performed with several ones). 3. E-Flow net design development: Set of tools developed under Rhinoceros for the evacuation net design based on the elements defined in the Thesis: Nodes, Paths, Relations, Areas 4. E-Flow simulator development: Set of tools that uses Rhinoceros as a 3D simulator of human behaviour. This simulator, of my own design, includes a new and original algorithm of human behaviour that involves aspects that are not found in other simulators. This tool allows to perform groups programmed simulations which behaviour is based on their enviroment analysis and presence of dynamic references. It includes other important innovations as for example: tools for signals analysis, dynamic signal elements, easy obstacle adding etc... More over, a tool that allows the own scenario movement implementation has been created by simulating the own oscillation movement, with the purpose of playing the vessel movement's influences in the individuals' displacements. 5. In an advanced stage of the development, the possibility of generating a video recording of all the simulation was also integrated, then from that moment all tests have been filed (and keep on doing so) in a database that collects all simulation characteristics, failures detected, etc. These stored tests amounts to a total of 81 GB at the moment of finishing the Thesis work. Generation and analysis of paths regarding the evacuation net created with E-Flow design and the simulations performed with E-Flow net Simulator. a. Analysis for the optimisation of the network configuration based in the existing nodes per area. b. Definition of the processes previous to the calculation of the feasible paths c. Paths calculation: i. Analysis of the different algorithms on existance nowadays for the routes optimisation. ii. Development of a new family of algorithms that I have called “Minimum Decision Algorithm (MDA)”, being composed of: 1. MDA basic 2. MDA minimum 3. MDA of not spacial interference 4. MDA of expansion (es de extenderse) o enlargement ( es de crecimiento) 5. MDA of organised expansion for a single origin (of organised enlargement for a single origin) 6. MDA of organised expansion (of organised enlargement) iii. All these algorithms have been implemented in the E-Flow application created in the Thesis dfor the routes analysis and it is the core of the Captain's support system. d. Determination of the alternatives for the evacuation plan. After defining all possible paths, different processes of analysis existing for weighing-based criteria are described, thus to end defining the own development method proposed in this Thesis and that aims to respond in an agreggation of possible routes basis obtained by means of the MDA algorithms what is the routes' combination more suitable for the Plan or Plans in every situation. The methodology created fot the selection of the combinations of routes that determine a complete Plan is baesd in four basic criteria that after applying, offer the best alternatives. In this stage a complex analysis of the progress along time is also included, that adds original and innovative defintions and formulations. e. Originated from the methodology created in this Thesis for the perfoming of the analysy of the progress along time, a new mathematic theorem has been defined, that has been called as "Family of quadrilateral of constant area". 7. Specification of the physiscal infrastructure of the Captain's help system: essential part is this physical infrastructure that will support it. This system will be made of sensors, actuators, apps for mobile devices etc... Within this chapter the different elements and technologies that make up this infrastructure will be studied. 8. Specification for the services infrastructure. 9. Start up of the Blog. " Virtual Environments (http://epcinnova-virtualenvironments.blogspot.com.es/)" in which all tests performed have been published in terms of analysis of the virtual enviroments as alternative to the simulators as well as to the laboratory experiments or simulations, including in most of the cases the possibility that the visitor can perform the simulation within the virtual enviroment. This blog also includes other sections that have been worked along and within this Thesis: - Collection of different virtual scenarios existent. - Schema that gathers information concerning accidents for maritime and terrestrial areas (under development) - Schema proposed for the collecting of information obtained from a simulation. 10. This Thesis is the basis of the E-Flow project (name of one of the applications developed in this work), a project in which the Thesis' author has worked in as Project Manager. In the project takes part a consortium of firms as well as the UPM and the aim is to bring to real life most part of the approaches and ideas contained in this Thesis. This project includes the development of the physical infrastructure as well as the services that will allow, among others, implement in complex infrastrucutres a platform that will make possible a dynamic evacuation and a continuous control of the monitoring and acting systems implemented. At the moment the project is getting to an end which goal is the implementation of a pilot project in a Hospital. We also would like to highlight the following advances concerning the scientific-technology divulgation: • Talk in the " 52th Congress of the Naval Engineering in Spain" with the article "E-Flow . Intelligent system integrated for supporting evacuation". This paper is about project E-Flow which I am Project Manager of, as well as this Thesis for the Doctorate, being both closely related. Two papers published In 2014 in the Naval Engineering Magazine. • Co-author in the article “E-Flow: A communication system for user notification in dynamic evacuation scenarios” [17] introduced in the 7th International Conference on Ubicuous Computing & Ambient Intelligence (UCAMI) held in Costa Rica. Last, but not least, one of the more interesting contributions is the defintion of several lines of research in the future, based on the advances made in this Thesis.
Resumo:
This paper describes the GTH-UPM system for the Albayzin 2014 Search on Speech Evaluation. Teh evaluation task consists of searching a list of terms/queries in audio files. The GTH-UPM system we are presenting is based on a LVCSR (Large Vocabulary Continuous Speech Recognition) system. We have used MAVIR corpus and the Spanish partition of the EPPS (European Parliament Plenary Sessions) database for training both acoustic and language models. The main effort has been focused on lexicon preparation and text selection for the language model construction. The system makes use of different lexicon and language models depending on the task that is performed. For the best configuration of the system on the development set, we have obtained a FOM of 75.27 for the deyword spotting task.