22 resultados para Content-Base Image Retrieval

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of cloud datacenters enhances the capability of online data storage. Since massive data is stored in datacenters, it is necessary to effectively locate and access interest data in such a distributed system. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These techniques cannot satisfy the requirements of content based image retrieval (CBIR). In this paper, we propose a scalable image retrieval framework which can efficiently support content similarity search and semantic search in the distributed environment. Its key idea is to integrate image feature vectors into distributed hash tables (DHTs) by exploiting the property of locality sensitive hashing (LSH). Thus, images with similar content are most likely gathered into the same node without the knowledge of any global information. For searching semantically close images, the relevance feedback is adopted in our system to overcome the gap between low-level features and high-level features. We show that our approach yields high recall rate with good load balance and only requires a few number of hops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ImageCLEF is a pilot experiment run at CLEF 2003 for cross language image retrieval using textual captions related to image contents. In this paper, we describe the participation of the MIRACLE research team (Multilingual Information RetrievAl at CLEF), detailing the different experiments and discussing their preliminary results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis functions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the other main design concern. Translation and scale invariance are achieved by means of standard image normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments, where images are corrupted with Gaussian noise up to different SNR values. Results are compared to those obtained using Zernike moments, showing that the proposed descriptor has the same performance in image retrieval tasks in noisy environments, but demanding much less computational power for every stage in the query chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main problem to study vertical drainage from the moisture distribution, on a vertisol profile, is searching for suitable methods using these procedures. Our aim was to design a digital image processing methodology and its analysis to characterize the moisture content distribution of a vertisol profile. In this research, twelve soil pits were excavated on a ba re Mazic Pellic Vertisols ix of them in May 13/2011 and the rest in May 19 /2011 after a moderate rainfall event. Digital RGB images were taken from each vertisol pit using a Kodak? camera selecting a size of 1600x945 pixels. Each soil image was processed to homogenized brightness and then a spatial filter with several window sizes was applied to select the optimum one. The RGB image obtained were divided in each matrix color selecting the best thresholds for each one, maximum and minimum, to be applied and get a digital binary pattern. This one was analyzed by estimating two fractal scaling exponents box counting dimension D BC) and interface fractal dimension (D) In addition, three pre-fractal scaling coefficients were determinate at maximum resolution: total number of boxes intercepting the foreground pattern (A), fractal lacunarity (?1) and Shannon entropy S1). For all the images processed the spatial filter 9x9 was the optimum based on entropy, cluster and histogram criteria. Thresholds for each color were selected based on bimodal histograms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La computación ubicua está extendiendo su aplicación desde entornos específicos hacia el uso cotidiano; el Internet de las cosas (IoT, en inglés) es el ejemplo más brillante de su aplicación y de la complejidad intrínseca que tiene, en comparación con el clásico desarrollo de aplicaciones. La principal característica que diferencia la computación ubicua de los otros tipos está en como se emplea la información de contexto. Las aplicaciones clásicas no usan en absoluto la información de contexto o usan sólo una pequeña parte de ella, integrándola de una forma ad hoc con una implementación específica para la aplicación. La motivación de este tratamiento particular se tiene que buscar en la dificultad de compartir el contexto con otras aplicaciones. En realidad lo que es información de contexto depende del tipo de aplicación: por poner un ejemplo, para un editor de imágenes, la imagen es la información y sus metadatos, tales como la hora de grabación o los ajustes de la cámara, son el contexto, mientras que para el sistema de ficheros la imagen junto con los ajustes de cámara son la información, y el contexto es representado por los metadatos externos al fichero como la fecha de modificación o la de último acceso. Esto significa que es difícil compartir la información de contexto, y la presencia de un middleware de comunicación que soporte el contexto de forma explícita simplifica el desarrollo de aplicaciones para computación ubicua. Al mismo tiempo el uso del contexto no tiene que ser obligatorio, porque si no se perdería la compatibilidad con las aplicaciones que no lo usan, convirtiendo así dicho middleware en un middleware de contexto. SilboPS, que es nuestra implementación de un sistema publicador/subscriptor basado en contenido e inspirado en SIENA [11, 9], resuelve dicho problema extendiendo el paradigma con dos elementos: el Contexto y la Función de Contexto. El contexto representa la información contextual propiamente dicha del mensaje por enviar o aquella requerida por el subscriptor para recibir notificaciones, mientras la función de contexto se evalúa usando el contexto del publicador y del subscriptor. Esto permite desacoplar la lógica de gestión del contexto de aquella de la función de contexto, incrementando de esta forma la flexibilidad de la comunicación entre varias aplicaciones. De hecho, al utilizar por defecto un contexto vacío, las aplicaciones clásicas y las que manejan el contexto pueden usar el mismo SilboPS, resolviendo de esta forma la incompatibilidad entre las dos categorías. En cualquier caso la posible incompatibilidad semántica sigue existiendo ya que depende de la interpretación que cada aplicación hace de los datos y no puede ser solucionada por una tercera parte agnóstica. El entorno IoT conlleva retos no sólo de contexto, sino también de escalabilidad. La cantidad de sensores, el volumen de datos que producen y la cantidad de aplicaciones que podrían estar interesadas en manipular esos datos está en continuo aumento. Hoy en día la respuesta a esa necesidad es la computación en la nube, pero requiere que las aplicaciones sean no sólo capaces de escalar, sino de hacerlo de forma elástica [22]. Desgraciadamente no hay ninguna primitiva de sistema distribuido de slicing que soporte un particionamiento del estado interno [33] junto con un cambio en caliente, además de que los sistemas cloud actuales como OpenStack u OpenNebula no ofrecen directamente una monitorización elástica. Esto implica que hay un problema bilateral: cómo puede una aplicación escalar de forma elástica y cómo monitorizar esa aplicación para saber cuándo escalarla horizontalmente. E-SilboPS es la versión elástica de SilboPS y se adapta perfectamente como solución para el problema de monitorización, gracias al paradigma publicador/subscriptor basado en contenido y, a diferencia de otras soluciones [5], permite escalar eficientemente, para cumplir con la carga de trabajo sin sobre-provisionar o sub-provisionar recursos. Además está basado en un algoritmo recientemente diseñado que muestra como añadir elasticidad a una aplicación con distintas restricciones sobre el estado: sin estado, estado aislado con coordinación externa y estado compartido con coordinación general. Su evaluación enseña como se pueden conseguir notables speedups, siendo el nivel de red el principal factor limitante: de hecho la eficiencia calculada (ver Figura 5.8) demuestra cómo se comporta cada configuración en comparación con las adyacentes. Esto permite conocer la tendencia actual de todo el sistema, para saber si la siguiente configuración compensará el coste que tiene con la ganancia que lleva en el throughput de notificaciones. Se tiene que prestar especial atención en la evaluación de los despliegues con igual coste, para ver cuál es la mejor solución en relación a una carga de trabajo dada. Como último análisis se ha estimado el overhead introducido por las distintas configuraciones a fin de identificar el principal factor limitante del throughput. Esto ayuda a determinar la parte secuencial y el overhead de base [26] en un despliegue óptimo en comparación con uno subóptimo. Efectivamente, según el tipo de carga de trabajo, la estimación puede ser tan baja como el 10 % para un óptimo local o tan alta como el 60 %: esto ocurre cuando se despliega una configuración sobredimensionada para la carga de trabajo. Esta estimación de la métrica de Karp-Flatt es importante para el sistema de gestión porque le permite conocer en que dirección (ampliar o reducir) es necesario cambiar el despliegue para mejorar sus prestaciones, en lugar que usar simplemente una política de ampliación. ABSTRACT The application of pervasive computing is extending from field-specific to everyday use. The Internet of Things (IoT) is the shiniest example of its application and of its intrinsic complexity compared with classical application development. The main characteristic that differentiates pervasive from other forms of computing lies in the use of contextual information. Some classical applications do not use any contextual information whatsoever. Others, on the other hand, use only part of the contextual information, which is integrated in an ad hoc fashion using an application-specific implementation. This information is handled in a one-off manner because of the difficulty of sharing context across applications. As a matter of fact, the application type determines what the contextual information is. For instance, for an imaging editor, the image is the information and its meta-data, like the time of the shot or camera settings, are the context, whereas, for a file-system application, the image, including its camera settings, is the information and the meta-data external to the file, like the modification date or the last accessed timestamps, constitute the context. This means that contextual information is hard to share. A communication middleware that supports context decidedly eases application development in pervasive computing. However, the use of context should not be mandatory; otherwise, the communication middleware would be reduced to a context middleware and no longer be compatible with non-context-aware applications. SilboPS, our implementation of content-based publish/subscribe inspired by SIENA [11, 9], solves this problem by adding two new elements to the paradigm: the context and the context function. Context represents the actual contextual information specific to the message to be sent or that needs to be notified to the subscriber, whereas the context function is evaluated using the publisher’s context and the subscriber’s context to decide whether the current message and context are useful for the subscriber. In this manner, context logic management is decoupled from context management, increasing the flexibility of communication and usage across different applications. Since the default context is empty, context-aware and classical applications can use the same SilboPS, resolving the syntactic mismatch that there is between the two categories. In any case, the possible semantic mismatch is still present because it depends on how each application interprets the data, and it cannot be resolved by an agnostic third party. The IoT environment introduces not only context but scaling challenges too. The number of sensors, the volume of the data that they produce and the number of applications that could be interested in harvesting such data are growing all the time. Today’s response to the above need is cloud computing. However, cloud computing applications need to be able to scale elastically [22]. Unfortunately there is no slicing, as distributed system primitives that support internal state partitioning [33] and hot swapping and current cloud systems like OpenStack or OpenNebula do not provide elastic monitoring out of the box. This means there is a two-sided problem: 1) how to scale an application elastically and 2) how to monitor the application and know when it should scale in or out. E-SilboPS is the elastic version of SilboPS. I t is the solution for the monitoring problem thanks to its content-based publish/subscribe nature and, unlike other solutions [5], it scales efficiently so as to meet workload demand without overprovisioning or underprovisioning. Additionally, it is based on a newly designed algorithm that shows how to add elasticity in an application with different state constraints: stateless, isolated stateful with external coordination and shared stateful with general coordination. Its evaluation shows that it is able to achieve remarkable speedups where the network layer is the main limiting factor: the calculated efficiency (see Figure 5.8) shows how each configuration performs with respect to adjacent configurations. This provides insight into the actual trending of the whole system in order to predict if the next configuration would offset its cost against the resulting gain in notification throughput. Particular attention has been paid to the evaluation of same-cost deployments in order to find out which one is the best for the given workload demand. Finally, the overhead introduced by the different configurations has been estimated to identify the primary limiting factor for throughput. This helps to determine the intrinsic sequential part and base overhead [26] of an optimal versus a suboptimal deployment. Depending on the type of workload, this can be as low as 10% in a local optimum or as high as 60% when an overprovisioned configuration is deployed for a given workload demand. This Karp-Flatt metric estimation is important for system management because it indicates the direction (scale in or out) in which the deployment has to be changed in order to improve its performance instead of simply using a scale-out policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la práctica habitual, para la elaboración de morteros se recomienda la utilización de granulometrías continuas. El requisito de continuidad y que los tamaños de partícula se encuentren dentro de los límites establecidos por “husos granulométricos” surge de las teorías clásicas de Fuller – Thompson y se apoya en la necesidad de obtener mezclas con adecuada docilidad en el estado fresco. Sin embargo, las distribuciones continuas de árido no representan las únicas alternativas para obtener mezclas que tengan una adecuada docilidad en estado fresco y mediante nuevos criterios de interferencia de partículas es posible demostrar que las distribuciones discontinuas aun siendo más compactas y con menor requerimientos de volumen de pasta pueden ser igual de dóciles en estado fresco. Aunque el volumen mínimo de pasta está condicionado por su fluidez y viscosidad estos parámetros pueden modificarse mediante la incorporación de filler de distinta naturaleza y aditivos químicos de reciente desarrollo. En consecuencia, se propone analizar la posibilidad de minimizar el contenido de pasta de morteros de base cemento, manteniendo las prestaciones en el estado fresco, con el objetivo de obtener una mejor estabilidad volumétrica, posibilitando mejor control de la retracción y de la fisuración. Para ello se emplearán criterios de interferencia de partículas, combinados con el uso de filler de distinta naturaleza La reducción del contenido de pasta conducirá también a mejorar el perfil sostenible de los morteros. El proceso de optimización tiene una base racional y, por lo tanto, será aplicable a distintos tipos de mortero, y las proporciones óptimas podrán adecuarse según las prestaciones requeridas para el material. SUMMARY In common practice, continuous sand gradings are recommended to produce ordinary mortars. This requirement, along with grading limits are based on classical theories, such as Fuller, aimed at achieving a reasonable packing density without compromising workability at the fresh state. Nevertheless, there are other alternatives, such as discontinuous curves based on particle interference criteria, which are capable of having even higher packing density. The less the content of voids in the granular skeleton, the less the amount of cement paste required to fill in these voids and coating the particles. Yet, the minimum volume of paste in a mortar is determined by requirements associated to the fresh state and thus, fluidity and viscosity of the paste play a significant role on the matter. These two properties can be modified by the use of suitable fillers and by the use of last-generation chemical admixtures. As a result, it is proposed to analyse the possibility of combining current particle interference criteria with the use of different types of filler and chemical admixtures to optimise cement-based mortar formulations. This optimisation is aimed at reducing the paste content while maintaining a suitable performance at the fresh state. The reduction in paste content would lead to a better dimensional stability, with better control of shrinkage and cracking behaviour. The foreseen optimisation process will have a strong rational basis and thus, it should be potentially useful to optimise mortar proportions according to a performance-based approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of the bilingual and monolingual participation of the MIRACLE team in CLEF 2004 was to test the effect of combination approaches on information retrieval. The starting point was a set of basic components: stemming, transformation, filtering, generation of n-grams, weighting and relevance feedback. Some of these basic components were used in different combinations and order of application for document indexing and for query processing. A second order combination was also tested, mainly by averaging or selective combination of the documents retrieved by different approaches for a particular query.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the first set of experiments defined by the MIRACLE (Multilingual Information RetrievAl for the CLEf campaign) research group for some of the cross language tasks defined by CLEF. These experiments combine different basic techniques, linguistic-oriented and statistic-oriented, to be applied to the indexing and retrieval processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Medical Retrieval task. We have focused on multimodal (or mixed) experiments that combine textual and visual retrieval. The main objective of our research has been to evaluate the effect on the medical retrieval process of the existence of an extended corpus that is annotated with the image type, associated to both the image itself and also to its textual description. For this purpose, an image classifier has been developed to tag each document with its class (1st level of the hierarchy: Radiology, Microscopy, Photograph, Graphic, Other) and subclass (2nd level: AN, CT, MR, etc.). For the textual-based experiments, several runs using different semantic expansion techniques have been performed. For the visual-based retrieval, different runs are defined by the corpus used in the retrieval process and the strategy for obtaining the class and/or subclass. The best results are achieved in runs that make use of the image subclass based on the classification of the sample images. Although different multimodal strategies have been submitted, none of them has shown to be able to provide results that are at least comparable to the ones achieved by the textual retrieval alone. We believe that we have been unable to find a metric for the assessment of the relevance of the results provided by the visual and textual processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente proyecto fin de carrera consiste en el diseño, desarrollo e implementación de una aplicación informática cuya función sea la identificación de distintos ficheros de imagen, audio y video y la interpretación y presentación de los metadatos asociados a los mismos. El software desarrollado, EXTRACTORDATOS_LBS, reconocerá el tipo de formato del fichero bajo estudio a partir del análisis de los bytes de identificación contenidos en la cabecera del archivo. En base a la información registrada en dicha cabecera, la aplicación interpretará el contenido de los metadatos asociados al fichero, mostrando por pantalla aquellos que resulten de interés para el análisis de los mismos. Previamente a la implementación del software se acomete el análisis teórico de los formatos de diversos archivos multimedia, recogidos en múltiples normas y recomendaciones. Tras esa identificación, se procede al desarrollo de la aplicación EXTRACTORDATOS_LBS , que informa de los parámetros de interés contenidos en las cabeceras de los archivos. El desarrollo se ilustra con los diagramas conceptuales asociados a la arquitectura del software implementado. De igual forma, se muestran las salidas por pantalla de una serie de ficheros de muestra, y se presenta el manual de usuario de la aplicación. La versión electrónica de este documento acompaña el ejecutable que permite el análisis de los archivos. This final project consists in the design, development and implementation of a computer application whose function is the identification of different image, audio and video files and the interpretation and presentation of their metadata. The software developed, EXTRACTORDATOS_LBS, will recognize the type of the file under study through the analysis of the identification bytes contained on the file’s header. Based on information registered in this header, the application will interpret the metadata content associated to file, displaying the most interesting ones for their analysis. Prior to the software implementation, a theoretical analysis of the different formats of media files is undertaken. After this identification, the application EXTRACTORDATOS_LBS is developed. This software analyzes and displays the most interesting parameters contained in multimedia file’s header. The development of the application is illustrated with flow charts associated to the architecture of the software. Furthermore, some graphic examples of use of the program are included, as well as the user’s manual. The electronic version of this document attaches the executable file that permits file analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-view microscopy techniques such as Light-Sheet Fluorescence Microscopy (LSFM) are powerful tools for 3D + time studies of live embryos in developmental biology. The sample is imaged from several points of view, acquiring a set of 3D views that are then combined or fused in order to overcome their individual limitations. Views fusion is still an open problem despite recent contributions in the field. We developed a wavelet-based multi-view fusion method that, due to wavelet decomposition properties, is able to combine the complementary directional information from all available views into a single volume. Our method is demonstrated on LSFM acquisitions from live sea urchin and zebrafish embryos. The fusion results show improved overall contrast and details when compared with any of the acquired volumes. The proposed method does not need knowledge of the system's point spread function (PSF) and performs better than other existing PSF independent fusion methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.