7 resultados para Concrete Bridge Pedestal
em Universidad Politécnica de Madrid
Resumo:
In this paper a summary of the methods presently used for optimization of prestressed concrete bridge decks is given. By means of linear optimization the sizes of the prestressing cables with a given fixed geometry are obtained. This simple procedure of linear optimization is also used to obtain the ‘best’ cable profile, by combining a series of feasible cable profiles. The results are compared with the ones obtained by other researchers. A step ahead in the field of optimization of prestressed bridge decks is the simultaneous search of the geometry and size of the prestressing cables. A non-linear programming for optimization is used, namely, ‘the steepest gradient method’. The results obtained are compared with the ones computed previously by means of linear programming techniques. Finally, the general problem of structural optimization is considered. This problem consists in finding the sizes and geometries of the prestressing cables as well as the longitudinal variation of the concrete section.
Resumo:
El deterioro del hormigón por ciclos de hielo-deshielo en presencia de sales fundentes es causa frecuente de problemas en los puentes e infraestructuras existentes en los países europeos. Los daños producidos por los ciclos de hielo-deshielo en el hormigón pueden ser internos, fundamentalmente la fisuración y/o externos como el descascarillamiento (desgaste superficial). La España peninsular presenta unas características geográficas y climáticas particulares. El 18% de la superficie tiene una altura superior a 1000mts y, además, la altura media geográfica con respecto al nivel del mar es de 660mts (siendo el segundo país más montañoso de toda Europa).Esto hace que la Red de Carreteras del Estado se vea afectada, durante determinados periodos, por fenómenos meteorológicos adversos, en particular por nevadas y heladas, que pueden comprometer las condiciones de vialidad para la circulación de vehículos. Por este motivo la Dirección General de Carreteras realiza trabajos anualmente (campañas de vialidad invernal, de 6 meses de duración) para el mantenimiento de la vialidad de las carreteras cuando éstas se ven afectadas por estos fenómenos. Existen protocolos y planes operativos que permiten sistematizar estos trabajos de mantenimiento que, además, se han intensificado en los últimos 10 años, y que se fundamentan en el empleo de sales fundentes, principalmente NaCl, con la misión de que no haya placas de hielo, ni nieve, en las carreteras. En zonas de fuerte oscilación térmica, que con frecuencia en España se localizan en la zona central del Pirineo, parte de la cornisa Cantábrica y Sistema Central, se producen importantes deterioros en las estructuras y paramentos de hormigón producidos por los ciclos de hielo- deshielo. Pero además el uso de fundentes de vialidad invernal acelera en gran medida la evolución de estos daños. Los tableros de hormigón de puentes de carretera de unos 40-50 años de antigüedad carecen, en general, de un sistema de impermeabilización, y están formados frecuentemente por un firme de mezcla asfáltica, una emulsión adherente y el hormigón de la losa. En la presente tesis se realiza una investigación que pretende reproducir en laboratorio los procesos que tienen lugar en el hormigón de tableros de puentes existentes de carreteras, de unos 40-50 años de antigüedad, que están expuestos durante largos periodos a sales fundentes, con objeto de facilitar la vialidad invernal, y a cambios drásticos de temperatura (hielo y deshielo). Por ello se realizaron cuatro campañas de investigación, teniendo en cuenta que, si bien nos basamos en la norma europea UNE-CEN/TS 12390-9 “Ensayos de hormigón endurecido. Resistencia al hielo-deshielo. Pérdida de masa”, se fabricaron probetas no estandarizadas para este ensayo, pensado en realidad para determinar la afección de los ciclos únicamente a la pérdida de masa. Las dimensiones de las probetas en nuestro caso fueron 150x300 mm, 75 x 150mm (cilíndricas normalizadas para roturas a compresión según la norma UNE-EN 12390-3) y 286x76x76 (prismáticas normalizadas para estudiar cambio de volumen según la norma ASTM C157), lo cual nos permitió realizar sobre las mismas probetas más ensayos, según se presentan en la tesis y, sobre todo, poder comparar los resultados con probetas extraídas de dimensiones similares en puentes existentes. En la primera campaña, por aplicación de la citada norma, se realizaron ciclos de H/D, con y sin contacto con sales de deshielo (NaCl en disolución del 3% según establece dicha norma). El hormigón fabricado en laboratorio, tratando de simular el de losas de tableros de puentes antiguos, presentó una fc de 22,6 MPa y relación agua/cemento de 0,65. Las probetas de hormigón fabricadas se sometieron a ciclos agresivos de hielo/deshielo (H/D), empleando una temperatura máxima de +20ºC y una temperatura mínima de -20ºC al objeto de poder determinar la sensibilidad de este ensayo tanto al tipo de hormigón elaborado como al tipo de probeta fabricado (cilíndrica y prismática). Esta campaña tuvo una segunda fase para profundizar más en el comportamiento de las probetas sometidas a ciclos H/D en presencia de sales. En la segunda campaña, realizada sobre probetas de hormigón fabricadas en laboratorio iguales a las anteriores, la temperaturas mínima del ensayo se subió a -14ºC, lo que nos permitió analizar el proceso de deterioro con más detalle. (Realizando una serie de ensayos de caracterización no destructivos y otros destructivos, y validando su aplicación a la detección de los deterioros causados tras los ensayos acelerados de hielodeshielo. También mediante aplicación de técnicas de microscopía electrónica.) La tercera campaña, se realizó sobre probetas de hormigón de laboratorio similares a las anteriores, fc de 29,3Mpa y relación a/c de 0,65, en las que se aplicó en una cara un revestimiento asfáltico de 2-4cms, según fueran prismáticas y cilíndricas respectivamente, compuesto por una mezcla asfáltica real (AC16), sobre una imprimación bituminosa. (Para simular el nivel de impermeabilización que produce un firme sobre el tablero de un puente) La cuarta campaña, se desarrolló tras una cuidadosa selección de dos puentes de hormigón de 40-50 años de antigüedad, expuestos y sensibles a deterioros de hielodeshielo, y en carreteras con aportación de fundentes. Una vez esto se extrajeron testigos de hormigón de zonas sanas (nervios del tablero), para realizar en laboratorio los mismos ensayos acelerados de hielo-deshielo y de caracterización, de la segunda campaña, basados en la misma norma. De los resultados obtenidos se concluye que cuando se emplean sales fundentes se acelera de forma significativa el deterioro, aumentando tanto el contenido de agua en los poros como el gradiente generado (mecanismo de deterioro físico). Las sales de deshielo aceleran claramente la aparición del daño, que se incrementa incluso en un factor de 5 según se constata en esta investigación para los hormigones ensayados. Pero además se produce un gradiente de cloruros que se ha detectado tanto en los hormigones diseñados en laboratorio como en los extraídos de puentes existentes. En casi todos los casos han aparecido cambios en la microestructura de la pasta de cemento (mecanismo de deterioro químico), confirmándose la formación de un compuesto en el gel CSH de la pasta de cemento, del tipo Ca2SiO3Cl2, que posiblemente está contribuyendo a la alteración de la pasta y a la aceleración de los daños en presencia de sales fundentes. Existe un periodo entre la aparición de fisuración y la pérdida de masa. Las fisuras progresan rápidamente desde la interfase de los áridos más pequeños y angulosos, facilitando así el deterioro del hormigón. Se puede deducir así que el tipo de árido afecta al deterioro. En el caso de los testigos con recubrimiento asfáltico, parece haberse demostrado que la precipitación de sales genera tensiones en las zonas de hormigón cercanas al recubrimiento, que terminan por fisurar el material. Y se constata que el mecanimo de deterioro químico, probablemente tenga más repercusión que el físico, por cuanto el recubrimiento asfáltico es capaz de retener suficiente agua, como para que el gradiente de contenido de agua en el hormigón sea mucho menor que sin el recubrimiento. Se constató, sin embargo, la importancia del gradiente de cloruros en el hormigon. Por lo que se deduce que si bien el recubrimiento asfáltico es ciertamente protector frente a los ciclos H/D, su protección disminuye en presencia de sales; es decir, los cloruros acabarán afectando al hormigón del tablero del puente. Finalmente, entre los hormigones recientes y los antiguos extraídos de puentes reales, se observa que existen diferencias significativas en cuanto a la resistencia a los ciclos H/D entre ellos. Los hormigones más recientes resultan, a igualdad de propiedades, más resistentes tanto a ciclos de H/D en agua como en sales. Posiblemente el hecho de que los hormigones de los puentes hayan estado expuestos a condiciones de temperaturas extremas durante largos periodos de tiempo les ha sensibilizado. La tesis realizada, junto con nuevos contrastes que se realicen en el futuro, nos permitirá implementar una metodología basada en la extracción de testigos de tableros de puente reales para someterlos a ensayos de hielo-deshielo, basados en la norma europea UNECEN/ TS 12390-9 aunque con probetas no normalizadas para el mismo, y, a su vez, realizar sobre estas probetas otros ensayos de caracterización destructivos, que posibilitarán evaluar los daños ocasionados por este fenómeno y su evolución temporal, para actuar consecuentemente priorizando intervenciones de impermeabilización y reparación en el parque de puentes de la RCE. Incluso será posible la elaboración de mapas de riesgo, en función de las zonas de climatología más desfavorable y de los tratamientos de vialidad invernal que se lleven a cabo. Concrete damage by freeze-thaw cycles in the presence of melting salts frequently causes problems on bridges and infrastructures in European countries. Damage caused by freeze-thaw cycles in the concrete can be internal, essentially cracking and / or external as flaking (surface weathering due to environmental action). The peninsular Spain presents specific climatic and geographical characteristics. 18% of the surface has a height greater than 1,000 m and the geographical average height from the sea level is 660 m (being the second most mountainous country in Europe). This makes the National Road Network affected during certain periods due to adverse weather, particularly snow and ice, which can compromise road conditions for vehicular traffic. For this reason the National Road Authority performs works annually (Winter Road Campaign, along 6 months) to maintain the viability of the roads when they are affected by these phenomena. There are protocols and operational plans that allow systematize these maintenance jobs, that also have intensified in the last 10 years, and which are based on the use of deicing salts, mainly NaCl, with the mission that no ice sheets, or snow appear on the roads. In areas of strong thermal cycling, which in Spain are located in the central area of the Pyrenees, part of the Cantabrian coast and Central System, significant deterioration take place in the structures and wall surfaces of concrete due to freeze-thaw. But also the use of deicing salts for winter maintenance greatly accelerated the development of such damages. The concrete decks for road bridges about 40-50 years old, lack generally a waterproofing system, and are often formed by a pavement of asphalt, an adhesive emulsion and concrete slab. In this thesis the research going on aims to reproduce in the laboratory the processes taking place in the concrete of an existing deck at road bridges, about 40-50 years old, they are exposed for long periods to icing salt, to be performed in order to facilitate winter maintenance, and drastic temperature changes (freezing and thawing). Therefore four campaigns of research were conducted, considering that while we rely on the European standard UNE-CEN/TS 12390-9 "Testing hardened concrete. Freezethaw resistance. Mass loss", nonstandard specimens were fabricated for this test, actually conceived to determine the affection of the cycles only to the mass loss. Dimensions of the samples were in our case 150x300 mm, 75 x 150mm (standard cylindrical specimens for compression fractures UNE-EN 12390-3) and 286x76x76 (standard prismatic specimens to study volume change ASTM C157), which allowed us to carry on same samples more trials, as presented in the thesis, and especially to compare the results with similar sized samples taken from real bridges. In the first campaign, by application of that European standard, freeze-thaw cycles, with and without contact with deicing salt (NaCl 3% solution in compliance with such standard) were performed. Concrete made in the laboratory, trying to simulate the old bridges, provided a compressive strength of 22.6 MPa and water/cement ratio of 0.65. In this activity, the concrete specimens produced were subjected to aggressive freeze/thaw using a maximum temperature of +20ºC and a minimum temperature of - 20°C in order to be able to determine the sensitivity of this test to the concrete and specimens fabricated. This campaign had a second phase to go deeper into the behavior of the specimens subjected to cycled freeze/thaw in the presence of salts. In the second campaign, conducted on similar concrete specimens manufactured in laboratory, temperatures of +20ºC and -14ºC were used in the tests, which allowed us to analyze the deterioration process in more detail (performing a series of non-destructive testing and other destructive characterization, validating its application to the detection of the damage caused after the accelerated freeze-thaw tests, and also by applying electron microscopy techniques). The third campaign was conducted on concrete specimens similar to the above manufactured in laboratory, both cylindrical and prismatic, which was applied on one side a 4 cm asphalt coating, consisting of a real asphalt mixture, on a bituminous primer (for simulate the level of waterproofing that produces a pavement on the bridge deck). The fourth campaign was developed after careful selection of two concrete bridges 40- 50 years old, exposed and sensitive to freeze-thaw damage, in roads with input of melting salts. Concrete cores were extracted from healthy areas, for the same accelerated laboratory freeze-thaw testing and characterization made for the second campaign, based on the same standard. From the results obtained it is concluded that when melting salts are employed deterioration accelerates significantly, thus increasing the water content in the pores, as the gradient. Besides, chloride gradient was detected both in the concrete designed in the laboratory and in the extracted in existing bridges. In all cases there have been changes in the microstructure of the cement paste, confirming the formation of a compound gel CSH of the cement paste, Ca2SiO3Cl2 type, which is possibly contributing to impair the cement paste and accelerating the damage in the presence of melting salts. The detailed study has demonstrated that the formation of new compounds can cause porosity at certain times of the cycles may decrease, paradoxically, as the new compound fills the pores, although this phenomenon does not stop the deterioration mechanism and impairments increase with the number of cycles. There is a period between the occurrence of cracking and mass loss. Cracks progress rapidly from the interface of the smallest and angular aggregate, thus facilitating the deterioration of concrete. It can be deduced so the aggregate type affects the deterioration. The presence of melting salts in the system clearly accelerates the onset of damage, which increases even by a factor of 5 as can be seen in this investigation for concrete tested. In the case of specimens with asphalt coating, it seems to have demonstrated that the precipitation of salts generate tensions in the areas close to the concrete coating that end up cracking the material. It follows that while the asphalt coating is certainly a protection against the freeze/thaw cycles, this protection decreases in the presence of salts; so the chlorides will finally affect the concrete bridge deck. Finally, among the recent concrete specimens and the old ones extracted from real bridges, it is observed that the mechanical strengths are very similar to each other, as well as the porosity values and the accumulation capacity after pore water saturation. However, there are significant differences in resistance to freeze/thaw cycles between them. More recent concrete are at equal properties more resistant both cycles freeze/thaw in water with or without salts. Possibly the fact that concrete bridges have been exposed to extreme temperatures for long periods of time has sensitized them. The study, along with new contrasts that occur in the future, allow us to implement a methodology based on the extraction of cores from the deck of real bridges for submission to freeze-thaw tests based on the European standard UNE-CEN/TS 12390-9 even with non-standard specimens for it, and in turn, performed on these samples other destructive characterization tests, which will enable to assess the damage caused by this phenomenon and its evolution, to act rightly prioritizing interventions improving the waterproofing and other repairs in the bridge stock of the National Road Network. It will even be possible to develop risk maps, depending on the worst weather areas and winter road treatments to be carried out.
Resumo:
Current design practices recommend to comply with the capacity protection principle, which pays special attention to ensuring an elastic response of the foundations under ground motion events. However, in cases such as elevated reinforced concrete (RC) pile-cap foundation typologies, this design criterion may lead to conservative designs, with excessively high construction costs. Reinforced concrete elevated pile-cap foundations is a system formed by a group of partially embedded piles connected through an aboveground stayed cap and embedded in soil. In the cases when they are subjected to ground motions, the piles suffer large bending moments that make it difficult to maintain their behavior within the elastic range of deformations. Aiming to make an in-depth analysis of the nonlinear behavior of elevated pile-cap foundations, a cyclic loading test was performed on a concrete 2x3 pile configuration specimen of elevated pile-cap foundation. Two results of this test, the failure mechanism and the ductile behavior, were used for the calibration of a numerical model built in OpenSees framework, by using a pushover analysis. The calibration of the numerical model enabled an in-depth study of the seismic nonlinear response of this kind of foundations. A parametric analysis was carried for this purpose, aiming to study how sensitive RC elevated pile-cap foundations are, when subjected to variations in the diameter of piles, reinforcement ratios, external loads, soil density or multilayer configurations. This analysis provided a set of ductility factors that can be used as a reference for design practices and which correspond to each of the cases analyzed.
Resumo:
Corrosion of a reinforcement bar leads to expansive pressure on the surrounding concrete that provokes internal cracking and, eventually, spalling and delamination. Here, an embedded cohesive crack 2D finite element is applied for simulating the cracking process. In addition, four simplified analytical models are introduced for comparative purposes. Under some assumptions about rust properties, corrosion rate, and particularly, the accommodation of oxide products within the open cracks generated in the process, the proposed FE model is able to estimate time to surface cracking quite accurately. Moreover, emerging cracking patterns are in reasonably good agreement with expectations. As a practical case, a prototype application of the model to an actual bridge deck is reported.
Resumo:
In the context of the present conference paper culverts are defined as an opening or conduit passing through an embankment usually for the purpose of conveying water or providing safe pedestrian and animal crossings under rail infrastructure. The clear opening of culverts may reach values of up to 12m however, values around 3m are encountered much more frequently. Depending on the topography, the number of culverts is about 10 times that of bridges. In spite of this, their dynamic behavior has received far less attention than that of bridges. The fundamental frequency of culverts is considerably higher than that of bridges even in the case of short span bridges. As the operational speed of modern high-speed passenger rail systems rises, higher frequencies are excited and thus more energy is encountered in frequency bands where the fundamental frequency of box culverts is located. Many research efforts have been spent on the subject of ballast instability due to bridge resonance, since it was first observed when high-speed trains were introduced to the Paris/Lyon rail line. To prevent this phenomenon from occurring, design codes establish a limit value for the vertical deck acceleration. Obviously one needs some sort of numerical model in order to estimate this acceleration level and at that point things get quite complicated. Not only acceleration but also displacement values are of interest e.g. to estimate the impact factor. According to design manuals the structural design should consider the depth of cover, trench width and condition, bedding type, backfill material, and compaction. The same applies to the numerical model however, the question is: What type of model is appropriate for this job? A 3D model including the embankment and an important part of the soil underneath the culvert is computationally very expensive and hard to justify taking into account the associated costs. Consequently, there is a clear need for simplified models and design rules in order to achieve reasonable costs. This paper will describe the results obtained from a 2D finite element model which has been calibrated by means of a 3D model and experimental data obtained at culverts that belong to the high-speed railway line that links the two towns of Segovia and Valladolid in Spain
Resumo:
Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.
Resumo:
The San Pedro Bridge has six spans and is 750 m (2460 ft) long, 88 m (290 ft) high, 12 m (39 ft) wide, and curved with a radius of 700 m (2300 ft). It was built in 1993 using the cantilever method. Its super - structure is a prestressed concrete box girder with main spans of 150 m (490 ft). In 2008 and 2009, the width of the platform was enlarged to 23 m (75 ft) using five movable sets of scaffolding. The bridge remained open to traffic during construction. The original platform was widened 6 m (20 ft) on each side by connecting a new lightweight concrete cantilever to the original upper slab. These cantilevers were supported by steelstruts. The tie into the upper slab was made with new transverse post-tensioned tendons. The original superstructure was strengthened to resist the additional dead load of the expansion and live loads of the extra traffic. An additional new central web and a composite concrete-steel section were constructed and connected to the concrete box and central web using vertical high-strength post-tensioning bars. Also, external post-tensioning cables were implemented. It was also necessary to strengthen the connection of the original concrete box section to the piers. Detailed calculations were performed to evaluate the load distribution transmitted to the piers by the webs and by the original inclined concrete walls of the box girder. Finally, a detailed second-order-analysis of the complete structure was made to guarantee the resistance of the piers compared with actual loads