8 resultados para Conceptual-semantic relations
em Universidad Politécnica de Madrid
Resumo:
Twitter lists organise Twitter users into multiple, often overlapping, sets. We believe that these lists capture some form of emergent semantics, which may be useful to characterise. In this paper we describe an approach for such characterisation, which consists of deriving semantic relations between lists and users by analyzing the cooccurrence of keywords in list names. We use the vector space model and Latent Dirichlet Allocation to obtain similar keywords according to co-occurrence patterns. These results are then compared to similarity measures relying on WordNet and to existing Linked Data sets. Results show that co-occurrence of keywords based on members of the lists produce more synonyms and more correlated results to that of WordNet similarity measures.
Resumo:
La integración de fuentes de información heterogéneas ha sido un problema abordado en diferentes tipos de fuentes a lo largo de las décadas de diferentes maneras. Una de ellas es el establecimiento de unas relaciones semánticas que permitan poder unir la información de las fuentes relacionadas. A estos enlaces, claves en la integración, se les ha llamado generalmente mappings. Los mappings se han usado en multitud de trabajos y se han abordado, de manera más práctica que teórica en muchos casos, diferentes soluciones para su descubrimiento, su almacenaje, su explotación, etc. Sin embargo, aunque han sido muchas las contribuciones sobre mappings, no hay una definición generalizada y admitida por la comunidad que cubra todos los aspectos vinculados a los mappings. Además, en su proceso de descubrimiento, no existe un marco teórico que defina metódicamente los procesos a seguir y sus características. Igualmente, la actual forma de evaluar el descubrimiento de mappings no es suficiente para toda la casuística existente. En este trabajo se aporta una definición de mapping génerica que engloba todos los sistemas actuales, la especificación detallada del proceso de descubrimiento y el análisis y la propuesta de un proceso de evaluación del descubrimiento. La validez de estos aportes se comprueba con la formulación de hipótesis y su comprobación mediante un estudio cuantitativo sobre un caso de uso con recursos geoespaciales heterogéneos. ABSTRACT The integration of heterogeneous information resources has been an issue addressed in different types of sources over the decades in different ways. One of them is the establishment of semantic relations which allow information from different related resources to be linked. These links, crucial pieces of this integration, are usually known as mappings. These mappings have been widely used in many applications, and different solutions for their discovery, storing, explotation, etc. have been presented, following rather a more practical than theoretical way in many cases. However, although mappings have been widely applied by many researchers, there is a lack of a generally accepted definition that can cover all the aspects related to mappings. Moreover, in the process of mapping discovery, there is not a theoretical framework that defines methodically the processes to be followed and their characteristics. Similarly, the current way of assessing or evaluating the discovery of mappings is insufficient for all the existing use cases. The main contributions of this work are threefold. On the one hand, it presents a general definition of "mapping" which covers all current systems. On the other hand, it describes a detailed specification of the discovery process, and, finally, it faces the analysis and the purpose of the evaluation of this discovery process. The validity of these contributions has been checked with the formulation of hypothesis which have been verified by using heterogeneous geospatial resources in a quantitative study.
Resumo:
El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.
Resumo:
Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound
Resumo:
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.
Resumo:
Folksonomies emerge as the result of the free tagging activity of a large number of users over a variety of resources. They can be considered as valuable sources from which it is possible to obtain emerging vocabularies that can be leveraged in knowledge extraction tasks. However, when it comes to understanding the meaning of tags in folksonomies, several problems mainly related to the appearance of synonymous and ambiguous tags arise, specifically in the context of multilinguality. The authors aim to turn folksonomies into knowledge structures where tag meanings are identified, and relations between them are asserted. For such purpose, they use DBpedia as a general knowledge base from which they leverage its multilingual capabilities.
Resumo:
Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models.
Resumo:
Cognitive linguistics is considered as one of the most appropriate approaches to the study of scientific and technical language formation and development, where metaphor is accepted to play an essential role. This paper, based on the Cognitive Theory of Metaphor, takes as the starting point the terminological metaphors established in the research project METACITEC(Note 1), which was developed with the purpose of unfolding constitutive metaphors and their function in the language of science and technology. After the analysis of metaphorical terms and using a mixed corpus from the fields of Agriculture, Geology, Mining, Metallurgy, and other related technical fields, this study presents a proposal for a hierarchy of the selected metaphors underlying the scientific conceptual system, based on the semantic distance found in the projection from the source domain to the target domain. We argue that this semantic distance can be considered as an important parameter to take into account in order to establish the metaphoricity of science and technology metaphorical terms. The findings contribute to expand on the CTM stance that metaphor is a matter of cognition by reviewing the abstract-concrete conceptual relationship between the target and source domains, and to determine the role of human creativity and imagination in the language of science and technology configuration