3 resultados para Computational biology
em Universidad Politécnica de Madrid
Resumo:
How easy is it to reproduce the results found in a typical computational biology paper? Either through experience or intuition the reader will already know that the answer is with difficulty or not at all. In this paper we attempt to quantify this difficulty by reproducing a previously published paper for different classes of users (ranging from users with little expertise to domain experts) and suggest ways in which the situation might be improved. Quantification is achieved by estimating the time required to reproduce each of the steps in the method described in the original paper and make them part of an explicit workflow that reproduces the original results. Reproducing the method took several months of effort, and required using new versions and new software that posed challenges to reconstructing and validating the results. The quantification leads to “reproducibility maps” that reveal that novice researchers would only be able to reproduce a few of the steps in the method, and that only expert researchers with advance knowledge of the domain would be able to reproduce the method in its entirety. The workflow itself is published as an online resource together with supporting software and data. The paper concludes with a brief discussion of the complexities of requiring reproducibility in terms of cost versus benefit, and a desiderata with our observations and guidelines for improving reproducibility. This has implications not only in reproducing the work of others from published papers, but reproducing work from one’s own laboratory.
Resumo:
Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology, and geostatistics.
Resumo:
A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages.