2 resultados para Compression Paddle design
em Universidad Politécnica de Madrid
Resumo:
The optimal design of a vertical cantilever beam is presented in this paper. The beam is assumed immersed in an elastic Winkler soil and subjected to several loads: a point force at the tip section, its self weight and a uniform distributed load along its length. lbe optimal design problem is to find the beam of a given length and minimum volume, such that the resultant compressive stresses are admisible. This prohlem is analyzed according to linear elasticity theory and within different alternative structural models: column, Navier-Bernoulli beam-column, Timoshenko beamcolumn (i.e. with shear strain) under conservative loads, typically, constant direction loads. Results obtained in each case are compared, in order to evaluate the sensitivity of model on the numerical results. The beam optimal design is described by the section distribution layout (area, second moment, shear area etc.) along the beam span and the corresponding beam total volume. Other situations, some of them very interesting from a theoretical point of view, with follower loads (Beck and Leipholz problems) are also discussed, leaving for future work numerical details and results.
Resumo:
A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.