4 resultados para Composite value measure
em Universidad Politécnica de Madrid
Resumo:
The aim of this work was to determine the nutritive value of palm kernel meal (PKM) in diets for growing rabbits. In Experiment 1, 20 New Zealand × Californian growing rabbits 50 d-old were used to determine energy, crude protein, fibre and fat digestibility of PKM. The nutritive value was estimated by the difference method using a basal diet and another diet made by substituting 200 g/kg of basal diet with PKM. Energy, crude protein, ether extract and neutral detergent fibre of PKM digestibilities were, respectively, 0.549 (±0.056, SE), 0.541 (±0.069), 0.850 (±0.048) and 0.430 (±0.101), and the digestible energy concentration was 10.9 MJ/kg (±1.03) DM. In Experiment 2, 412 rabbits were allocated at random to the two experimental diets to measure growing performance. Inclusion of 200 g PKM/kg in the diet did not affect feed or digestible energy intake but decreased slightly (by around 5%) average daily gain (P = 0.003) and feed efficiency (P < 0.001). Neither mortality nor Clostridium perfringens counts in soft faeces were affected by type of diet. Palm kernel meal can be considered a palatable source of fibre, protein and fat for rabbits and can substitute significant amounts of other fibrous ingredients in the diet without adverse effects on growth performance.
Resumo:
We introduce in this paper a method to calculate the Hessenberg matrix of a sum of measures from the Hessenberg matrices of the component measures. Our method extends the spectral techniques used by G. Mantica to calculate the Jacobi matrix associated with a sum of measures from the Jacobi matrices of each of the measures. We apply this method to approximate the Hessenberg matrix associated with a self-similar measure and compare it with the result obtained by a former method for self-similar measures which uses a fixed point theorem for moment matrices. Results are given for a series of classical examples of self-similar measures. Finally, we also apply the method introduced in this paper to some examples of sums of (not self-similar) measures obtaining the exact value of the sections of the Hessenberg matrix.
Resumo:
The end-notched flexure (ENF) test calculates the value of mode II fracture energy in adhesive bonding between the substrates of same nature. Traditional methods of calculating fracture energy in the ENF test are not suitable in cases where the thickness of the adhesive is non-negligible compared with adherent thicknesses. To address this issue, a specific methodology for calculating mode II fracture energy has been proposed in this paper. To illustrate the applicability of the proposed method, the fracture energy was calculated by the ENF test for adhesive bonds between aluminium and a composite material, which considered two different types of adhesive (epoxy and polyurethane) and various surface treatments. The proposed calculation model provides higher values of fracture energy than those obtained from the simplified models that consider the adhesive thickness to be zero, supporting the conclusion that the calculation of mode II fracture energy for adhesives with non-negligible thickness relative to their adherents should be based on mathematical models, such as the method proposed in this paper, that incorporate the influence of this thickness.
Resumo:
A methodology is presented to measure the fiber/matrix interface shear strength in composites. The strategy is based on performing a fiber push-in test at the central fiber of highly-packed fiber clusters with hexagonal symmetry which are often found in unidirectional composites with a high volume fraction of fibers. The mechanics of this test was analyzed in detail by means of three-dimensional finite element simulations. In particular, the influence of different parameters (interface shear strength, toughness and friction as well as fiber longitudinal elastic modulus and curing stresses) on the critical load at the onset of debonding was established. From the results of the numerical simulations, a simple relationship between the critical load and the interface shear strength is proposed. The methodology was validated in an unidirectional C/epoxy composite and the advantages and limitations of the proposed methodology are indicated.