12 resultados para Comparative risk assessment
em Universidad Politécnica de Madrid
Resumo:
Three methodologies to assess As bioaccessibility were evaluated using playgroundsoil collected from 16 playgrounds in Madrid, Spain: two (Simplified Bioaccessibility Extraction Test: SBET, and hydrochloric acid-extraction: HCl) assess gastric-only bioaccessibility and the third (Physiologically Based Extraction Test: PBET) evaluates mouth–gastric–intestinal bioaccessibility. Aqua regia-extractable (pseudo total) As contents, which are routinely employed in riskassessments, were used as the reference to establish the following percentages of bioaccessibility: SBET – 63.1; HCl – 51.8; PBET – 41.6, the highest values associated with the gastric-only extractions. For Madridplaygroundsoils – characterised by a very uniform, weakly alkaline pH, and low Fe oxide and organic matter contents – the statistical analysis of the results indicates that, in contrast with other studies, the highest percentage of As in the samples was bound to carbonates and/or present as calcium arsenate. As opposed to the As bound to Fe oxides, this As is readily released in the gastric environment as the carbonate matrix is decomposed and calcium arsenate is dissolved, but some of it is subsequently sequestered in unavailable forms as the pH is raised to 5.5 to mimic intestinal conditions. The HCl extraction can be used as a simple and reliable (i.e. low residual standard error) proxy for the more expensive, time consuming, and error-prone PBET methodology. The HCl method would essentially halve the estimate of carcinogenic risk for children playing in Madridplaygroundsoils, providing a more representative value of associated risk than the pseudo-total concentrations used at present
Resumo:
A total of 92 samples of street dust were collected in Luanda, Angola, were sieved below 100 μm, and analysed by ICP-MS for 35 elements after an aqua-regia digestion. The concentration and spatial heterogeneity of trace elements in the street dust of Luanda are generally lower than in most industrialized cities in the Northern hemisphere. These observations reveal a predominantly “natural” origin for the street dust in Luanda, which is also manifested in that some geochemical processes that occur in natural soils are preserved in street dust: the separation of uranium from thorium, and the retention of the former by carbonate materials, or the high correlation between arsenic and vanadium due to their common mode of adsorption on solid particles in the form of oxyanions. The only distinct anthropogenic fingerprint in the composition of Luanda's street dust is the association Pb–Cd–Sb–Cu (and to a lesser extent, Ba–Cr–Zn). The use of risk assessment strategies has proved helpful in identifying the routes of exposure to street dust and the trace elements therein of most concern in terms of potential adverse health effects. In Luanda the highest levels of risk seem to be associated (a) with the presence of As and Pb in the street dust and (b) with the route of ingestion of dust particles, for all the elements included in the study except Hg, for which inhalation of vapours presents a slightly higher risk than ingestion. However, given the large uncertainties associated with the estimates of toxicity values and exposure factors, and the absence of site-specific biometric factors, these results should be regarded as preliminary and further research should be undertaken before any definite conclusions regarding potential health effects are drawn.
Resumo:
The principal risks in the railway industry are mainly associated with collisions, derailments and level crossing accidents. An understanding of the nature of previous accidents on the railway network is required to identify potential causes and develop safety systems and deploy safety procedures. Risk assessment is a process for determining the risk magnitude to assist with decision-making. We propose a three-step methodology to predict the mean number of fatalities in railway accidents. The first is to predict the mean number of accidents by analyzing generalized linear models and selecting the one that best fits to the available historical data on the basis of goodness-offit statistics. The second is to compute the mean number of fatalities per accident and the third is to estimate the mean number of fatalities. The methodology is illustrated on the Spanish railway system. Statistical models accounting for annual and grouped data for the 1992-2009 time period have been analyzed. After identifying the models for broad and narrow gauges, we predicted mean number of accidents and the number of fatalities for the 2010-18 time period.
Resumo:
All activities of an organization involve risks that should be managed. The risk management process aids decision making by taking account of uncertainty and the possibility of future events or circumstances (intended or unintended) and their effects on agreed objectives. With that idea, new ISO Standard has been drawn up. ISO 31010 has been recently issued which provides a structured process that identifies how objectives may be affected, and analyses the risk in term of consequences and their probabilities before deciding on whether further treatment is required. In this lecture, that ISO Standard has been adapted to Open Pit Blasting Operations, focusing in Environmental effects which can be managed properly. Technique used is Fault Tree Analysis (FTA), which is applied in all possible scenarios, providing to Blasting Professionals the tools to identify, analyze and manage environmental effects in blasting operations. Also this lecture can help to minimize each effect, studying each case. This paper also can be useful to Project Managers and Occupational Health and Safety Departments (OH&S) because blasting operations can be evaluated and compared one to each other to determine the risks that should be managed in different case studies. The environmental effects studied are: ground vibrations, flyrock and air overpressure (airblast). Sometimes, blasting operations are carried out near populated areas where environmental effects may impose several limitations on the use of explosives. In those cases, where these factors approach certain limits, National Standards and Regulations have to be applied.
Resumo:
The Renewable Energy Directive (2009/28/EC) requires that 20% of the EU's energy needs should come from renewable sources by 2020, and includes a target for the transport sector of 10% from biofuels. This report analyses and discusses the global impacts of this biofuel target on agricultural production, markets and land use, as simulated by three agricultural sector models, AGLINK-COSIMO, ESIM and CAPRI. The impacts identified include higher EU production of ethanol and biodiesel, and of the crops used to produce them, as well as more imports of both biofuels. Trade flows of biofuel feedstocks also change to reflect greater EU demand, including a significant increase in vegetable oil imports. However, as the extra demand is small in world market terms, the impact on world market prices is limited. With the EU biofuel target, global use of land for crop cultivation is higher by 5.2 million hectares. About one quarter is area within the EU, some of which would otherwise have left agriculture.
Resumo:
Human health problems and solutions. Urban gardening has spread worldwide in recent years as it enhances food security and selfsupply and promotes community integration. However urban soils are significantly enriched in trace elements relative to background levels. Exposure to the soil in urban gardens may therefore result in adverse health effects depending on the degree of contact during gardening, infant recreational activities and ingestion of vegetables grown in them. In order to evaluate this potential risk, 36 composite samples were collected from the top 20 cm of the soil of 6 urban gardens in Madrid. The aqua regia (pseudototal) and glycine-extractable (bioaccessible) concentrations of Co, Cr, Cu, Ni, Pb and Zn were determined by atomic absorption spectrophotometry. Additionally, pH, texture, Fe, Ca, and Mn concentrations, and organic matter and calcium carbonate contents were determined in all urban gardens and their influence on trace element bioaccessibility was analyzed.
Resumo:
Pseudo-total (i.e. aqua regia extractable) and gastric-bioaccessible (i.e. glycine + HCl extractable) concentrations of Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in a total of 48 samples collected from six community urban gardens of different characteristics in the city of Madrid (Spain). Calcium carbonate appears to be the soil property that determines the bioaccessibility of a majority of those elements, and the lack of influence of organic matter, pH and texture can be explained by their low levels in the samples (organic matter) or their narrow range of variation (pH and texture). A conservative risk assessment with bioaccessible concentrations in two scenarios, i.e. adult urban farmers and children playing in urban gardens, revealed acceptable levels of risk, but with large differences between urban gardens depending on their history of land use and their proximity to busy areas in the city center. Only in a worst-case scenario in which children who use urban gardens as recreational areas also eat the produce grown in them would the risk exceed the limits of acceptability
Resumo:
Las terminales de contenedores son sistemas complejos en los que un elevado número de actores económicos interactúan para ofrecer servicios de alta calidad bajo una estricta planificación y objetivos económicos. Las conocidas como "terminales de nueva generación" están diseñadas para prestar servicio a los mega-buques, que requieren tasas de productividad que alcanzan los 300 movimientos/ hora. Estas terminales han de satisfacer altos estándares dado que la competitividad entre terminales es elevada. Asegurar la fiabilidad de las planificaciones del atraque es clave para atraer clientes, así como reducir al mínimo el tiempo que el buque permanece en el puerto. La planificación de las operaciones es más compleja que antaño, y las tolerancias para posibles errores, menores. En este contexto, las interrupciones operativas deben reducirse al mínimo. Las principales causas de dichas perturbaciones operacionales, y por lo tanto de incertidumbre, se identifican y caracterizan en esta investigación. Existen una serie de factores que al interactuar con la infraestructura y/o las operaciones desencadenan modos de fallo o parada operativa. Los primeros pueden derivar no solo en retrasos en el servicio sino que además puede tener efectos colaterales sobre la reputación de la terminal, o incluso gasto de tiempo de gestión, todo lo cual supone un impacto para la terminal. En el futuro inmediato, la monitorización de las variables operativas presenta gran potencial de cara a mejorar cualitativamente la gestión de las operaciones y los modelos de planificación de las terminales, cuyo nivel de automatización va en aumento. La combinación del criterio experto con instrumentos que proporcionen datos a corto y largo plazo es fundamental para el desarrollo de herramientas que ayuden en la toma de decisiones, ya que de este modo estarán adaptadas a las auténticas condiciones climáticas y operativas que existen en cada emplazamiento. Para el corto plazo se propone una metodología con la que obtener predicciones de parámetros operativos en terminales de contenedores. Adicionalmente se ha desarrollado un caso de estudio en el que se aplica el modelo propuesto para obtener predicciones de la productividad del buque. Este trabajo se ha basado íntegramente en datos proporcionados por una terminal semi-automatizada española. Por otro lado, se analiza cómo gestionar, evaluar y mitigar el efecto de las interrupciones operativas a largo plazo a través de la evaluación del riesgo, una forma interesante de evaluar el effecto que eventos inciertos pero probables pueden generar sobre la productividad a largo plazo de la terminal. Además se propone una definición de riesgo operativo junto con una discusión de los términos que representan con mayor fidelidad la naturaleza de las actividades y finalmente, se proporcionan directrices para gestionar los resultados obtenidos. Container terminals are complex systems where a large number of factors and stakeholders interact to provide high-quality services under rigid planning schedules and economic objectives. The socalled next generation terminals are conceived to serve the new mega-vessels, which are demanding productivity rates up to 300 moves/hour. These terminals need to satisfy high standards because competition among terminals is fierce. Ensuring reliability in berth scheduling is key to attract clients, as well as to reduce at a minimum the time that vessels stay the port. Because of the aforementioned, operations planning is becoming more complex, and the tolerances for errors are smaller. In this context, operational disturbances must be reduced at a minimum. The main sources of operational disruptions and thus, of uncertainty, are identified and characterized in this study. External drivers interact with the infrastructure and/or the activities resulting in failure or stoppage modes. The later may derive not only in operational delays but in collateral and reputation damage or loss of time (especially management times), all what implies an impact for the terminal. In the near future, the monitoring of operational variables has great potential to make a qualitative improvement in the operations management and planning models of terminals that use increasing levels of automation. The combination of expert criteria with instruments that provide short- and long-run data is fundamental for the development of tools to guide decision-making, since they will be adapted to the real climatic and operational conditions that exist on site. For the short-term a method to obtain operational parameter forecasts in container terminals. To this end, a case study is presented, in which forecasts of vessel performance are obtained. This research has been entirely been based on data gathered from a semi-automated container terminal from Spain. In the other hand it is analyzed how to manage, evaluate and mitigate disruptions in the long-term by means of the risk assessment, an interesting approach to evaluate the effect of uncertain but likely events on the long-term throughput of the terminal. In addition, a definition for operational risk evaluation in port facilities is proposed along with a discussion of the terms that better represent the nature of the activities involved and finally, guidelines to manage the results obtained are provided.
Resumo:
Systems of Systems (SoS) present challenging features and existing tools result often inadequate for their analysis, especially for heteregeneous networked infrastructures. Most accident scenarios in networked systems cannot be addressed by a simplistic black or white (i.e. functioning or failed) approach. Slow deviations from nominal operation conditions may cause degraded behaviours that suddenly end up into unexpected malfunctioning, with large portions of the network affected. In this paper,we present a language for modelling networked SoS. The language makes it possible to represent interdependencies of various natures, e.g. technical, organizational and human. The representation of interdependencies is based on control relationships that exchange physical quantities and related information. The language also makes it possible the identification of accident scenarios, by representing the propagation of failure events throughout the network. The results can be used for assessing the effectiveness of those mechanisms and measures that contribute to the overall resilience, both in qualitative and quantitative terms. The presented modelling methodology is general enough to be applied in combination with already existing system analysis techniques, such as risk assessment, dependability and performance evaluation
Resumo:
The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.
Resumo:
Colombia is one of the largest per capita mercury polluters in the world as a consequence of its artisanal gold mining activities. The severity of this problem in terms of potential health effects was evaluated by means of a probabilistic risk assessment carried out in the twelve departments (or provinces) in Colombia with the largest gold production. The two exposure pathways included in the risk assessment were inhalation of elemental Hg vapors and ingestion of fish contaminated with methyl mercury. Exposure parameters for the adult population (especially rates of fish consumption) were obtained from nation-wide surveys and concentrations of Hg in air and of methyl-mercury in fish were gathered from previous scientific studies. Fish consumption varied between departments and ranged from 0 to 0.3 kg d?1. Average concentrations of total mercury in fish (70 data) ranged from 0.026 to 3.3 lg g?1. A total of 550 individual measurements of Hg in workshop air (ranging from menor queDL to 1 mg m?3) and 261 measurements of Hg in outdoor air (ranging from menor queDL to 0.652 mg m?3) were used to generate the probability distributions used as concentration terms in the calculation of risk. All but two of the distributions of Hazard Quotients (HQ) associated with ingestion of Hg-contaminated fish for the twelve regions evaluated presented median values higher than the threshold value of 1 and the 95th percentiles ranged from 4 to 90. In the case of exposure to Hg vapors, minimum values of HQ for the general population exceeded 1 in all the towns included in this study, and the HQs for miner-smelters burning the amalgam is two orders of magnitude higher, reaching values of 200 for the 95th percentile. Even acknowledging the conservative assumptions included in the risk assessment and the uncertainties associated with it, its results clearly reveal the exorbitant levels of risk endured not only by miner-smelters but also by the general population of artisanal gold mining communities in Colombia.
Resumo:
This paper presents an assessment analysis of damage domains of the 30 MWth prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA.