8 resultados para Combat Search And Rescue
em Universidad Politécnica de Madrid
Resumo:
All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase.
Resumo:
A mobile ad hoc network MANET is a collection of wireless mobile nodes that can dynamically configure a network without a fixed infrastructure or centralized administration. This makes it ideal for emergency and rescue scenarios where information sharing is essential and should occur as soon as possible. This article discusses which of the routing strategies for mobile ad hoc networks: proactive, reactive and hierarchical, have a better performance in such scenarios. Using a real urban area being set for the emergency and rescue scenario, we calculate the density of nodes and the mobility model needed for validation. The NS2 simulator has been used in our study. We also show that the hierarchical routing strategies are beffer suited for this type of scenarios.
Resumo:
A mobile Ad Hoc network (MANET) is a collection of wireless mobile nodes that can dynamically configure a network without a fixed infrastructure or central administration. This makes it ideal for emergency and rescue scenarios, where sharing information is essential and should occur as soon as possible. This article discusses which of the routing strategies for mobile MANETs: proactive, reactive or hierarchical, has a better performance in such scenarios. By selecting a real urban area for the emergency and rescue scenario, we calculated the density of nodes and the mobility model needed for the validation study of AODV, DSDV and CBRP in the routing model. The NS2 simulator has been used for our study. We also show that the hierarchical routing strategies are better suited for this type of scenarios.
Resumo:
En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.
Resumo:
This paper describes an infrastructure for the automated evaluation of semantic technologies and, in particular, semantic search technologies. For this purpose, we present an evaluation framework which follows a service-oriented approach for evaluating semantic technologies and uses the Business Process Execution Language (BPEL) to define evaluation workflows that can be executed by process engines. This framework supports a variety of evaluations, from different semantic areas, including search, and is extendible to new evaluations. We show how BPEL addresses this diversity as well as how it is used to solve specific challenges such as heterogeneity, error handling and reuse
Resumo:
We propose the use of the "infotaxis" search strategy as the navigation system of a robotic platform, able to search and localize infectious foci by detecting the changes in the profile of volatile organic compounds emitted by and infected plant. We builded a simple and cost effective robot platform that substitutes odour sensors in favour of light sensors and study their robustness and performance under non ideal conditions such as the exitence of obstacles due to land topology or weeds.
Resumo:
In this paper a combined algorithm for analyzing structural controllability and observability of complex networks is presented. The algorithm addresses the two fundamental properties to guarantee structural controllability of a system: the absence of dilations and the accessibility of all nodes. The first problem is reformulated as a Maximum Matching search and it is addressed via the Hopcroft- Karp algorithm; the second problem is solved via a new wiring algorithm. Both algorithms can be combined to efficiently determine the number of required controllers and observers as well as the new required connections in order to guarantee controllability and observability in real complex networks. An application to a Twitter social network with over 100,000 nodes illustrates the proposed algorithms.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.