2 resultados para Collecting
em Universidad Politécnica de Madrid
Resumo:
The main objective of this paper is to propose a model for helping logistics managers to choose the appropriate location points in order to situate the collection points for used portable batteries. The proposed model has two parts: a static part and a dynamic part. We can conclude that this model helps managers in the decision of locating/modifying collection points in two ways: to add new collection points to a reverse logistics network that needs more points or to delete collection points from a network that has more points than those recommended.
Resumo:
Las sondas eléctricas se emplean habitualmente en la diagnosis de plasmas. La presente tesis aborda la operación de las sondas colectoras y emisoras de Langmuir en plasmas fríos de baja densidad. El estudio se ha centrado en la determinación del potencial de plasma, Vsp, mediante el potencial flotante de una sonda emisora. Esta técnica consiste en la medida del potencial de la sonda correspondiente a la condición de corriente neta igual a cero, el cual se denomina potencial flotante, VF. Este potencial se desplaza hacia el potencial del plasma según aumenta la emisión termoiónica de la sonda, hasta que se satura cerca de Vsp. Los experimentos llevados a cabo en la pluma de plasma de un motor iónico y en un plasma de descarga de glow muestran que la corriente de electrones termoiónicos es mayor que la corriente de electrones recogidos para una sonda polarizada por debajo del potencial del plasma, resultado inconsistente con la teoría tradicionalmente aceptada. Para investigar estos resultados se ha introducido el parámetro R, definido como el cociente entre la corriente de electrones emitidos y recogidos por la sonda. Este parámetro, que está relacionado con la diferencia de potencial VF - Vsp, también es útil para la descripción de los modos de operación de la sonda emisora (débil, fuerte y más allá del fuerte). Los resultados experimentales evidencian que, al contrario de lo que indica la teoría, R es mayor que la unidad. Esta discrepancia se puede solucionar introduciendo una población efectiva de electrones. Con dicha población, el nuevo modelo para la corriente total de la sonda reproduce los datos experimentales. El origen de este grupo electrónico es todavía una cuestión abierta, pero podría estar originada por una nueva estructura de potencial cerca de la sonda cuando ésta trabaja en el régimen de emisión fuerte. Para explicar dicha estructura de potencial, se propone un modelo unidimensional compuesto por un mínimo de potencial cerca de la superficie de la sonda. El análisis numérico indica que este pozo de potencial aparece para muy altas temperaturas de la sonda, reduciendo la cantidad de electrones emitidos que alcanzan el plasma y evitando así cualquier posible perturbación de éste. Los aspectos experimentales involucrados en el método del potencial flotante también se han estudiado, incluyendo cuestiones como las diferentes técnicas de obtención del VF, el cociente señal-ruido, el acoplamiento de la señal de los equipos utilizados para la obtención de las curvas I-V o la evidencia experimental de los diferentes modos de operación de la sonda. Estas evidencias empíricas se encuentran en todos los aspectos de operación de la sonda: la recolección de electrones, el potencial flotante, la precisión en las curvas I-V y la emisión electrónica. Ésta última también se estudia en la tesis, debido a que un fenómeno de super emisión tiene lugar en el régimen de emisión fuerte. En este modo de operación, las medidas experimentales indican que las corrientes termoiónicas de electrones son mayores que aquéllas predichas por la ecuación de Richardson-Dushman clásica. Por último, la diagnosis de plasmas usando sondas eléctrica bajo presencia de granos de polvo (plasmas granulares) en plasmas fríos de baja densidad también se ha estudiado, mediante la aplicación numérica de la técnica del potencial flotante de la sonda emisora en un plasma no convencional. Los resultados apuntan a que el potencial flotante de una sonda emisora se vería afectado por altas densidades de polvo o grandes partículas. ABSTRACT Electric probes are widely employed for plasma diagnostics. This dissertation concerns the operation of collecting and emissive Langmuir probes in low density cold plasmas. The study is focused on the determination of the plasma potential, Vsp, by means of the floating potential of emissive probes. This technique consists of the measurement of the probe potential, corresponding to the zero net probe current, which is the so-called floating potential, VF . This potential displaces towards the plasma potential as the thermionic electron emission increases, until it saturates near Vsp. Experiments carried out in the plasma plume of an ion thruster and in a glow discharge plasma show the thermionic electron current of the emissive Langmuir probe is higher than the collected electron current, for a probe with a bias potential below Vsp, which is inconsistent with the traditional accepted theory. To investigate these results, a parameter R is introduced as the ratio between the emitted and the collected electron current. This parameter, which is related to the difference VF - Vsp, is also useful for the description of the operation modes of the emissive Langmuir probe (weak, strong and beyond strong). The experimental results give an inconsistency of R > 1, which is solved by a modification of the theory for emissive probes, with the introduction of an effective electron population. With this new electron group, the new model for the total probe current agrees with the experimental data. The origin of this electron group remains an open question, but it might be originated by a new potential structure near the emissive probe when it operates in the strong emission regime. A simple one-dimension model composed by a minimum of potential near the probe surface is discussed for strongly emitting emissive probes. The results indicate that this complex potential structure appears for very high probe temperatures and the potential well might reduce the emitted electrons population reaching the plasma bulk. The experimental issues involved in the floating potential method are also studied, as the different obtaining techniques of VF, the signal-to-noise ratio, the signal coupling of the I-V curve measurement system or the experimental evidence of the probe operation modes. These empirical proofs concern all the probe operation aspects: the electron collection, the floating potential, the I-V curve accuracy as well as the electron emission. This last issue is also investigated in this dissertation, because a super emission takes place in the strong emission regime. In this operation mode, the experimental results indicate that the thermionic electron currents might be higher than those predicted by the classical Richardson-Dushman equation. Finally, plasma diagnosis using electric probes in the presence of dust grains (dusty plasmas) in low density cold plasmas is also addressed. The application of the floating potential technique of the emissive probe in a non-conventional complex plasma is numerically investigated, whose results point out the floating potential of the emissive probe might be shifted for high dust density or large dust particles.