24 resultados para Cohesive zone model

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congreso internacional celebrado en Praga sobre modelos numéricos de fractura en el campo de la ciencia de materiales y estructuras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel is, together with concrete, the most widely used material in civil engineering works. Not only its high strength, but also its ductility is of special interest, since it allows for more energy to be stored before failure. A better understanding of the material behaviour before failure may lead to better structural safety strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical implementation of the cohesive crack model for the anal-ysis of quasibrittle materials based on the strong discontinuity approach in the framework of the finite element method. A simple central force model is used for the stress versus crack opening curve. The additional degrees of freedom defining the crack opening are determined at the crack level, thus avoiding the need for performing a static condensation at the element level. The need for a tracking algorithm is avoided by using a consistent pro-cedure for the selection of the separated nodes. Such a model is then implemented into a commercial program by means of a user subroutine, consequently being contrasted with the experimental results. The model takes into account the anisotropy of the material. Numerical simulations of well-known experiments are presented to show the ability of the proposed model to simulate the fracture of quasibrittle materials such as mortar, concrete and masonry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a new material model developed with the aim of analyzing failure of blunt notched components made of nonlinear brittle materials. The model, which combines the cohesive crack model with Hencky's theory of total deformations, is used to simulate an experimental benchmark carried out previously by the authors. Such combination is achieved through the embedded crack approach concept. In spite of the unavailability of precise material data, the numerical predictions obtained show good agreement with the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work shows a numerical procedure for bond between indented wires and concrete, and the coupled splitting of the concrete. The bond model is an interface, non-associative, plasticity model. It is coupled with a cohesive fracture model for concrete to take into account the splitting of such concrete. The radial component of the prestressing force, increased by Poisson’s effect, may split the surrounding concrete, decreasing the wire confinement and diminishing the bonding. The combined action of the bond and the splitting is studied with the proposed model. The results of the numerical model are compared with the results of a series of tests, such as those which showed splitting induced by the bond between wire and concrete. Tests with different steel indentation depths were performed. The numerical procedure accurately reproduces the experimental records and improves knowledge of this complex process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the common pathologies of brickwork masonry structural elements and walls is the cracking associated with the differential settlements and/or excessive deflections of the slabs along the life of the structure. The scarce capacity of the masonry in order to accompany the structural elements that surround it, such as floors, beams or foundations, in their movements makes the brickwork masonry to be an element that frequently presents this kind of problem. This problem is a fracture problem, where the wall is cracked under mixed mode fracture: tensile and shear stresses combination, under static loading. Consequently, it is necessary to advance in the simulation and prediction of brickwork masonry mechanical behaviour under tensile and shear loading. The quasi-brittle behaviour of the brickwork masonry can be studied using the cohesive crack model whose application to other quasibrittle materials like concrete has traditionally provided very satisfactory results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El hormigón es uno de los materiales de construcción más empleados en la actualidad debido a sus buenas prestaciones mecánicas, moldeabilidad y economía de obtención, entre otras ventajas. Es bien sabido que tiene una buena resistencia a compresión y una baja resistencia a tracción, por lo que se arma con barras de acero para formar el hormigón armado, material que se ha convertido por méritos propios en la solución constructiva más importante de nuestra época. A pesar de ser un material profusamente utilizado, hay aspectos del comportamiento del hormigón que todavía no son completamente conocidos, como es el caso de su respuesta ante los efectos de una explosión. Este es un campo de especial relevancia, debido a que los eventos, tanto intencionados como accidentales, en los que una estructura se ve sometida a una explosión son, por desgracia, relativamente frecuentes. La solicitación de una estructura ante una explosión se produce por el impacto sobre la misma de la onda de presión generada en la detonación. La aplicación de esta carga sobre la estructura es muy rápida y de muy corta duración. Este tipo de acciones se denominan cargas impulsivas, y pueden ser hasta cuatro órdenes de magnitud más rápidas que las cargas dinámicas impuestas por un terremoto. En consecuencia, no es de extrañar que sus efectos sobre las estructuras y sus materiales sean muy distintos que las que producen las cargas habitualmente consideradas en ingeniería. En la presente tesis doctoral se profundiza en el conocimiento del comportamiento material del hormigón sometido a explosiones. Para ello, es crucial contar con resultados experimentales de estructuras de hormigón sometidas a explosiones. Este tipo de resultados es difícil de encontrar en la literatura científica, ya que estos ensayos han sido tradicionalmente llevados a cabo en el ámbito militar y los resultados obtenidos no son de dominio público. Por otra parte, en las campañas experimentales con explosiones llevadas a cabo por instituciones civiles el elevado coste de acceso a explosivos y a campos de prueba adecuados no permite la realización de ensayos con un elevado número de muestras. Por este motivo, la dispersión experimental no es habitualmente controlada. Sin embargo, en elementos de hormigón armado sometidos a explosiones, la dispersión experimental es muy acusada, en primer lugar, por la propia heterogeneidad del hormigón, y en segundo, por la dificultad inherente a la realización de ensayos con explosiones, por motivos tales como dificultades en las condiciones de contorno, variabilidad del explosivo, o incluso cambios en las condiciones atmosféricas. Para paliar estos inconvenientes, en esta tesis doctoral se ha diseñado un novedoso dispositivo que permite ensayar hasta cuatro losas de hormigón bajo la misma detonación, lo que además de proporcionar un número de muestras estadísticamente representativo, supone un importante ahorro de costes. Con este dispositivo se han ensayado 28 losas de hormigón, tanto armadas como en masa, de dos dosificaciones distintas. Pero además de contar con datos experimentales, también es importante disponer de herramientas de cálculo para el análisis y diseño de estructuras sometidas a explosiones. Aunque existen diversos métodos analíticos, hoy por hoy las técnicas de simulación numérica suponen la alternativa más avanzada y versátil para el cálculo de elementos estructurales sometidos a cargas impulsivas. Sin embargo, para obtener resultados fiables es crucial contar con modelos constitutivos de material que tengan en cuenta los parámetros que gobiernan el comportamiento para el caso de carga en estudio. En este sentido, cabe destacar que la mayoría de los modelos constitutivos desarrollados para el hormigón a altas velocidades de deformación proceden del ámbito balístico, donde dominan las grandes tensiones de compresión en el entorno local de la zona afectada por el impacto. En el caso de los elementos de hormigón sometidos a explosiones, las tensiones de compresión son mucho más moderadas, siendo las tensiones de tracción generalmente las causantes de la rotura del material. En esta tesis doctoral se analiza la validez de algunos de los modelos disponibles, confirmando que los parámetros que gobiernan el fallo de las losas de hormigón armado ante explosiones son la resistencia a tracción y su ablandamiento tras rotura. En base a los resultados anteriores se ha desarrollado un modelo constitutivo para el hormigón ante altas velocidades de deformación, que sólo tiene en cuenta la rotura por tracción. Este modelo parte del de fisura cohesiva embebida con discontinuidad fuerte, desarrollado por Planas y Sancho, que ha demostrado su capacidad en la predicción de la rotura a tracción de elementos de hormigón en masa. El modelo ha sido modificado para su implementación en el programa comercial de integración explícita LS-DYNA, utilizando elementos finitos hexaédricos e incorporando la dependencia de la velocidad de deformación para permitir su utilización en el ámbito dinámico. El modelo es estrictamente local y no requiere de remallado ni conocer previamente la trayectoria de la fisura. Este modelo constitutivo ha sido utilizado para simular dos campañas experimentales, probando la hipótesis de que el fallo de elementos de hormigón ante explosiones está gobernado por el comportamiento a tracción, siendo de especial relevancia el ablandamiento del hormigón. Concrete is nowadays one of the most widely used building materials because of its good mechanical properties, moldability and production economy, among other advantages. As it is known, it has high compressive and low tensile strengths and for this reason it is reinforced with steel bars to form reinforced concrete, a material that has become the most important constructive solution of our time. Despite being such a widely used material, there are some aspects of concrete performance that are not yet fully understood, as it is the case of its response to the effects of an explosion. This is a topic of particular relevance because the events, both intentional and accidental, in which a structure is subjected to an explosion are, unfortunately, relatively common. The loading of a structure due to an explosive event occurs due to the impact of the pressure shock wave generated in the detonation. The application of this load on the structure is very fast and of very short duration. Such actions are called impulsive loads, and can be up to four orders of magnitude faster than the dynamic loads imposed by an earthquake. Consequently, it is not surprising that their effects on structures and materials are very different than those that cause the loads usually considered in engineering. This thesis broadens the knowledge about the material behavior of concrete subjected to explosions. To that end, it is crucial to have experimental results of concrete structures subjected to explosions. These types of results are difficult to find in the scientific literature, as these tests have traditionally been carried out by armies of different countries and the results obtained are classified. Moreover, in experimental campaigns with explosives conducted by civil institutions the high cost of accessing explosives and the lack of proper test fields does not allow for the testing of a large number of samples. For this reason, the experimental scatter is usually not controlled. However, in reinforced concrete elements subjected to explosions the experimental dispersion is very pronounced. First, due to the heterogeneity of concrete, and secondly, because of the difficulty inherent to testing with explosions, for reasons such as difficulties in the boundary conditions, variability of the explosive, or even atmospheric changes. To overcome these drawbacks, in this thesis we have designed a novel device that allows for testing up to four concrete slabs under the same detonation, which apart from providing a statistically representative number of samples, represents a significant saving in costs. A number of 28 slabs were tested using this device. The slabs were both reinforced and plain concrete, and two different concrete mixes were used. Besides having experimental data, it is also important to have computational tools for the analysis and design of structures subjected to explosions. Despite the existence of several analytical methods, numerical simulation techniques nowadays represent the most advanced and versatile alternative for the assessment of structural elements subjected to impulsive loading. However, to obtain reliable results it is crucial to have material constitutive models that take into account the parameters that govern the behavior for the load case under study. In this regard it is noteworthy that most of the developed constitutive models for concrete at high strain rates arise from the ballistic field, dominated by large compressive stresses in the local environment of the area affected by the impact. In the case of concrete elements subjected to an explosion, the compressive stresses are much more moderate, while tensile stresses usually cause material failure. This thesis discusses the validity of some of the available models, confirming that the parameters governing the failure of reinforced concrete slabs subjected to blast are the tensile strength and softening behaviour after failure. Based on these results we have developed a constitutive model for concrete at high strain rates, which only takes into account the ultimate tensile strength. This model is based on the embedded Cohesive Crack Model with Strong Discontinuity Approach developed by Planas and Sancho, which has proved its ability in predicting the tensile fracture of plain concrete elements. The model has been modified for its implementation in the commercial explicit integration program LS-DYNA, using hexahedral finite elements and incorporating the dependence of the strain rate, to allow for its use in dynamic domain. The model is strictly local and does not require remeshing nor prior knowledge of the crack path. This constitutive model has been used to simulate two experimental campaigns, confirming the hypothesis that the failure of concrete elements subjected to explosions is governed by their tensile response, being of particular relevance the softening behavior of concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los paneles sándwich de yeso laminado y lana de roca presentan una abundante patología de fisuración debida a flechas excesivas de forjados. Existe, por tanto, la necesidad de avanzar en la simulación y predicción de comportamiento bajo solicitaciones de tracción y cortante de ese tipo de paneles, a pesar de que en las aplicaciones habituales no tienen responsabilidad estructural. El comportamiento de este material puede ser considerado cuasi-frágil, y en base a ello en este trabajo ha sido estudiado haciendo uso de modelos de fisura cohesiva, cuya aplicación a otros materiales cuasifrágiles, como el hormigón, ha aportado resultados muy satisfactorios. En esta comunicación se presenta el trabajo realizado para estudiar el efecto del tamaño del elemento de yeso laminado y lana de roca en su comportamiento mecánico-resistente. Para ello se diseñó una campaña de ensayos en modo mixto sobre probetas de diferente tamaño. Se han realizado ensayos de flexión en tres puntos en modo mixto de unas probetas entalladas, geométricamente similares y de diferente tamaño, obteniéndose las curvas carga-desplazamiento y cargaabertura de la boca de la entalla. Para simular numéricamente el comportamiento en fractura del panel en modo mixto se ha utilizado un modelo de elementos finitos con fisura embebida basado en la fisura cohesiva en el que se introducen como entrada los parámetros obtenidos a partir de la experimentación de trabajos anteriores, obteniéndose un buen ajuste. En función de estos resultados se analiza el efecto del tamaño en los paneles. Sandwich panels of laminated gypsum and rockwool have an abundant pathology of cracking due to excessive slabs deflection. Therefore, it is necessary to progress in the simulation and prediction of behaviour under tensile and shear load of such panels, although in typical applications have no structural responsability. The behaviour of this material may be considered quasi-brittle and, based on this idea, in this work has been studied using a cohesive crack model that has been applied to other quasi-brittle materials, such as concrete, and has provided very satisfactory results. This communication presents the work carried out to study the size effect of the specimen of plasterboard and rockwool in its mechanical and resistant behaviour. The authors designed an experimental campaign under mixed mode composed by testing specimens of different sizes. Assymetrical three-point bending tests have been performed on notched specimens, geometrically similar and of different size, to obtain load-displacement and load-crack moutn opening displacement curves. To numerically simulate the mixed-mode fracture behaviour of the panels we have used a finite element model with embedded crack, based on the cohesive crack model, using as input the experimental parameters obtained in previous work, obtaining a good adjustment. Based on these results we analyze the size effect of the panels

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los paneles sándwich de yeso laminado y lana de roca presentan una abundante patología de fisuración debida a flechas excesivas de forjados. Existe, por tanto, la necesidad de avanzar en la simulación y predicción de comportamiento bajo solicitaciones de tracción y cortante de ese tipo de paneles, a pesar de que en las aplicaciones habituales no tienen responsabilidad estructural. El comportamiento de este material puede ser considerado cuasi-frágil, y en base a ello en este trabajo ha sido estudiado haciendo uso de modelos de fisura cohesiva, cuya aplicación a otros materiales cuasifrágiles, como el hormigón, ha aportado resultados muy satisfactorios. En esta comunicación se presenta el trabajo realizado para estudiar el efecto del tamaño del elemento de yeso laminado y lana de roca en su comportamiento mecánico-resistente. Para ello se diseñó una campaña de ensayos en modo mixto sobre probetas de diferente tamaño. Se han realizado ensayos de flexión en tres puntos en modo mixto de unas probetas entalladas, geométricamente similares y de diferente tamaño, obteniéndose las curvas carga-desplazamiento y cargaabertura de la boca de la entalla. Para simular numéricamente el comportamiento en fractura del panel en modo mixto se ha utilizado un modelo de elementos finitos con fisura embebida basado en la fisura cohesiva en el que se introducen como entrada los parámetros obtenidos a partir de la experimentación de trabajos anteriores, obteniéndose un buen ajuste. En función de estos resultados se analiza el efecto del tamaño en los paneles. Sandwich panels of laminated gypsum and rockwool have an abundant pathology of cracking due to excessive slabs deflection. Therefore, it is necessary to progress in the simulation and prediction of behaviour under tensile and shear load of such panels, although in typical applications have no structural responsability. The behaviour of this material may be considered quasi-brittle and, based on this idea, in this work has been studied using a cohesive crack model that has been applied to other quasi-brittle materials, such as concrete, and has provided very satisfactory results. This communication presents the work carried out to study the size effect of the specimen of plasterboard and rockwool in its mechanical and resistant behaviour. The authors designed an experimental campaign under mixed mode composed by testing specimens of different sizes. Assymetrical three-point bending tests have been performed on notched specimens, geometrically similar and of different size, to obtain load-displacement and load-crack moutn opening displacement curves. To numerically simulate the mixed-mode fracture behaviour of the panels we have used a finite element model with embedded crack, based on the cohesive crack model, using as input the experimental parameters obtained in previous work, obtaining a good adjustment. Based on these results we analyze the size effect of the panels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of research on mixed mode fracture of sandwich panels of plasterboard and rock wool. The experimental data of the performed tests are supplied. The specimens were made from commercial panels. Asymmetrical three-point bending tests were performed on notched specimens. Three sizes of geometrically similar specimens were tested for studying the size effect. The paper also includes the numerical simulation of the experimental results by using an embedded cohesive crack model.The involved parameters for modelling are previously measured by standardised tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If reinforced concrete structures are to be safe under extreme impulsive loadings such as explosions, a broad understanding of the fracture mechanics of concrete under such events is needed. Most buildings and infrastructures which are likely to be subjected to terrorist attacks are borne by a reinforced concrete (RC) structure. Up to some years ago, the traditional method used to study the ability of RC structures to withstand explosions consisted on a choice between handmade calculations, affordable but inaccurate and unreliable, and full scale experimental tests involving explosions, expensive and not available for many civil institutions. In this context, during the last years numerical simulations have arisen as the most effective method to analyze structures under such events. However, for accurate numerical simulations, reliable constitutive models are needed. Assuming that failure of concrete elements subjected to blast is primarily governed by the tensile behavior, a constitutive model has been built that accounts only for failure under tension while it behaves as elastic without failure under compression. Failure under tension is based on the Cohesive Crack Model. Moreover, the constitutive model has been used to simulate the experimental structural response of reinforced concrete slabs subjected to blast. The results of the numerical simulations with the aforementioned constitutive model show its ability of representing accurately the structural response of the RC elements under study. The simplicity of the model, which does not account for failure under compression, as already mentioned, confirms that the ability of reinforced concrete structures to withstand blast loads is primarily governed by tensile strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper summarizes the research activities focused on the behaviour of concrete and concrete structures subjected to blast loading carried out by the Department of Materials Science of the Technical University of Madrid (PUM). These activities comprise the design and construction of a test bench that allows for testing up to four planar concrete specimens with one single explosion, the study of the performance of different protection concepts for concrete structures and, finally, the development of a numerical model for the simulation of concrete structural elements subjected to blast. Up to date 6 different types of concrete have been studied, from plain normal strength concrete, to high strength concrete, including also fibre reinforced concretes with different types of fibres. The numerical model is based on the Cohesive Crack Model approach, and has been developed for the LSDYNA finite element code through a user programmed subroutine. Despite its simplicity, the model is able to predict the failure patterns of the concrete slabs tested with a high level of accuracy

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fracture of ductile materials, such as metals, is usually explained with the theory of nucleation, growth and coalescence of microvoids. Based on this theory, many numerical models have been developed, with a special mention to Gurson-type models. These models simulate mathematically the physical growth of microvoids, leading to a progressive development of the internal damage that takes place during a tensile test. In these models, the damage starts to develop in very early stages of the test. Tests carried out by the authors suggest that, in the case of some eutectoid steels such as those used for manufacturing prestressing steel wires, the internal damage that takes place as a result of the growth of microvoids is only noticeable in very late stages of the tensile test. In the authors’ opinion, using a cohesive model as a failure criterion may be interesting in this case; a cohesive model only requires two parameters to be defined, with the fracture energy being one of them, which can be obtained experimentally. In addition to this, given that it is known that the stress triaxiality has a strong influence on the fracture of ductile materials, a cohesive model whose parameters are affected by the value of the stress triaxiality can be considered. This work presents a fracture model for steel specimens in a tensile test, based on a cohesive behaviour and taking into account the effect of stress triaxiality, which is different at each point of the fracture plane.