4 resultados para Cobalt phthalocyanine

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A member of the Cation Diffusion Facilitator (CDF) family with high sequence similarity to DmeF (Divalent metal efflux) from Cupridavirus metallidurans was identified in Rhizobium leguminosarum bv. viciae UPM1137. The R. leguminosarum dmeF mutant strain was highly sensitive to Co2+ and moderately sensitive to Ni2+, but its tolerance to other metals such as Zn2+, Cu2+ or Mn2+ was unaffected. An open reading frame located upstream of R. leguminosarum dmeF, designated dmeR, encodes a protein homologous to the nickel and cobalt regulator RcnR from E.coli. Expression of the dmeRF operon was induced by nickel and cobalt ions in free-living cells, likely by alleviating DmeR-mediated transcriptional repression of the operon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In prokaryotes, nickel is an essential element participating in the structure of enzymes involved in multiple cellular processes. Nickel transport is a challenge for microorganisms since, although essential, high levels of this metal inside the cell are toxic. For this reason, bacteria have developed high-affinity nickel transporters as well as nickel-specific detoxification systems. Ultramafic soils, and soils contaminated with heavy metals are excellent sources of nickel resistant bacteria. Molecular analysis of strains isolated in the habitats has revealed novel genetic systems involved in adaptation to such hostile conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.