9 resultados para Clinical information
em Universidad Politécnica de Madrid
Resumo:
The availability of electronic health data favors scientific advance through the creation of repositories for secondary use. Data anonymization is a mandatory step to comply with current legislation. A service for the pseudonymization of electronic healthcare record (EHR) extracts aimed at facilitating the exchange of clinical information for secondary use in compliance with legislation on data protection is presented. According to ISO/TS 25237, pseudonymization is a particular type of anonymization. This tool performs the anonymizations by maintaining three quasi-identifiers (gender, date of birth and place of residence) with a degree of specification selected by the user. The developed system is based on the ISO/EN 13606 norm using its characteristics specifically favorable for anonymization. The service is made up of two independent modules: the demographic server and the pseudonymizing module. The demographic server supports the permanent storage of the demographic entities and the management of the identifiers. The pseudonymizing module anonymizes the ISO/EN 13606 extracts. The pseudonymizing process consists of four phases: the storage of the demographic information included in the extract, the substitution of the identifiers, the elimination of the demographic information of the extract and the elimination of key data in free-text fields. The described pseudonymizing system was used in three Telemedicine research projects with satisfactory results. A problem was detected with the type of data in a demographic data field and a proposal for modification was prepared for the group in charge of the drawing up and revision of the ISO/EN 13606 norm.
Resumo:
Background: Early and effective identification of developmental disorders during childhood remains a critical task for the international community. The second highest prevalence of common developmental disorders in children are language delays, which are frequently the first symptoms of a possible disorder. Objective: This paper evaluates a Web-based Clinical Decision Support System (CDSS) whose aim is to enhance the screening of language disorders at a nursery school. The common lack of early diagnosis of language disorders led us to deploy an easy-to-use CDSS in order to evaluate its accuracy in early detection of language pathologies. This CDSS can be used by pediatricians to support the screening of language disorders in primary care. Methods: This paper details the evaluation results of the ?Gades? CDSS at a nursery school with 146 children, 12 educators, and 1 language therapist. The methodology embraces two consecutive phases. The first stage involves the observation of each child?s language abilities, carried out by the educators, to facilitate the evaluation of language acquisition level performed by a language therapist. Next, the same language therapist evaluates the reliability of the observed results. Results: The Gades CDSS was integrated to provide the language therapist with the required clinical information. The validation process showed a global 83.6% (122/146) success rate in language evaluation and a 7% (7/94) rate of non-accepted system decisions within the range of children from 0 to 3 years old. The system helped language therapists to identify new children with potential disorders who required further evaluation. This process will revalidate the CDSS output and allow the enhancement of early detection of language disorders in children. The system does need minor refinement, since the therapists disagreed with some questions from the CDSS knowledge base (KB) and suggested adding a few questions about speech production and pragmatic abilities. The refinement of the KB will address these issues and include the requested improvements, with the support of the experts who took part in the original KB development. Conclusions: This research demonstrated the benefit of a Web-based CDSS to monitor children?s neurodevelopment via the early detection of language delays at a nursery school. Current next steps focus on the design of a model that includes pseudo auto-learning capacity, supervised by experts.
Resumo:
El trabajo ha sido realizado dentro del marco de los proyectos EURECA (Enabling information re-Use by linking clinical REsearch and Care) e INTEGRATE (Integrative Cancer Research Through Innovative Biomedical Infrastructures), en los que colabora el Grupo de Informática Biomédica de la UPM junto a otras universidades e instituciones sanitarias europeas. En ambos proyectos se desarrollan servicios e infraestructuras con el objetivo principal de almacenar información clínica, procedente de fuentes diversas (como por ejemplo de historiales clínicos electrónicos de hospitales, de ensayos clínicos o artículos de investigación biomédica), de una forma común y fácilmente accesible y consultable para facilitar al máximo la investigación de estos ámbitos, de manera colaborativa entre instituciones. Esta es la idea principal de la interoperabilidad semántica en la que se concentran ambos proyectos, siendo clave para el correcto funcionamiento del software del que se componen. El intercambio de datos con un modelo de representación compartido, común y sin ambigüedades, en el que cada concepto, término o dato clínico tendrá una única forma de representación. Lo cual permite la inferencia de conocimiento, y encaja perfectamente en el contexto de la investigación médica. En concreto, la herramienta a desarrollar en este trabajo también está orientada a la idea de maximizar la interoperabilidad semántica, pues se ocupa de la carga de información clínica con un formato estandarizado en un modelo común de almacenamiento de datos, implementado en bases de datos relacionales. El trabajo ha sido desarrollado en el periodo comprendido entre el 3 de Febrero y el 6 de Junio de 2014. Se ha seguido un ciclo de vida en cascada para la organización del trabajo realizado en las tareas de las que se compone el proyecto, de modo que una fase no puede iniciarse sin que se haya terminado, revisado y aceptado la fase anterior. Exceptuando la tarea de documentación del trabajo (para la elaboración de esta memoria), que se ha desarrollado paralelamente a todas las demás. ----ABSTRACT--- The project has been developed during the second semester of the 2013/2014 academic year. This Project has been done inside EURECA and INTEGRATE European biomedical research projects, where the GIB (Biomedical Informatics Group) of the UPM works as a partner. Both projects aim is to develop platforms and services with the main goal of storing clinical information (e.g. information from hospital electronic health records (EHRs), clinical trials or research articles) in a common way and easy to access and query, in order to support medical research. The whole software environment of these projects is based on the idea of semantic interoperability, which means the ability of computer systems to exchange data with unambiguous and shared meaning. This idea allows knowledge inference, which fits perfectly in medical research context. The tool to develop in this project is also "semantic operability-oriented". Its purpose is to store standardized clinical information in a common data model, implemented in relational databases. The project has been performed during the period between February 3rd and June 6th, of 2014. It has followed a "Waterfall model" of software development, in which progress is seen as flowing steadily downwards through its phases. Each phase starts when its previous phase has been completed and reviewed. The task of documenting the project‟s work is an exception; it has been performed in a parallel way to the rest of the tasks.
Resumo:
En la situación actual donde los sistemas TI sanitarios son diversos con modelos que van desde soluciones predominantes, adoptadas y creadas por grandes organizaciones, hasta soluciones a medida desarrolladas por cualquier empresa de la competencia para satisfacer necesidades concretas. Todos estos sistemas se encuentran bajo similares presiones financieras, no sólo de las condiciones económicas mundiales actuales y el aumento de los costes sanitarios, sino también bajo las presiones de una población que ha adoptado los avances tecnológicos actuales, y demanda una atención sanitaria más personalizable a la altura de esos avances tecnológicos que disfruta en otros ámbitos. El objeto es desarrollar un modelo de negocio orientado al soporte del intercambio de información en el ámbito clínico. El objetivo de este modelo de negocio es aumentar la competitividad dentro de este sector sin la necesidad de recurrir a expertos en estándares, proporcionando perfiles técnicos cualificados menos costosos con la ayuda de herramientas que simplifiquen el uso de los estándares de interoperabilidad. Se hará uso de especificaciones abiertas ya existentes como FHIR, que publica documentación y tutoriales bajo licencias abiertas. La principal ventaja que nos encontramos es que ésta especificación presenta un giro en la concepción actual de la disposición de información clínica, vista hasta ahora como especial por el requerimiento de estándares más complejos que solucionen cualquier caso por específico que sea. Ésta especificación permite hacer uso de la información clínica a través de tecnologías web actuales (HTTP, HTML, OAuth2, JSON, XML) que todo el mundo puede usar sin un entrenamiento particular para crear y consumir esta información. Partiendo por tanto de un mercado con una integración de la información casi inexistente, comparada con otros entornos actuales, hará que el gasto en integración clínica aumente dramáticamente, dejando atrás los desafíos técnicos cuyo gasto retrocederá a un segundo plano. El gasto se centrará en las expectativas de lo que se puede obtener en la tendencia actual de la personalización de los datos clínicos de los pacientes, con acceso a los registros de instituciones junto con datos ‘sociales/móviles/big data’.---ABSTRACT---In the current situation IT health systems are diverse, with models varying from predominant solutions adopted and created by large organizations, to ad-hoc solutions developed by any company to meet specific needs. However, all these systems are under similar financial pressures, not only from current global economic conditions and increased health care costs, but also under pressure from a population that has embraced the current technological advances, and demand a more personalized health care, up to those enjoyed by technological advances in other areas. The purpose of this thesis is to develop a business model aimed at the provision of information exchange within the clinical domain. It is intended to increase competitiveness in the health IT sector without the need for experts in standards, providing qualified technical profiles less expensively with the help of tools that simplify the use of interoperability standards. Open specifications, like FHIR, will be used in order to enable interoperability between systems. The main advantage found within FHIR is that introduces a shift in the current conception of available clinical information. So far seen, the clinical information domain IT systems, as a special requirement for more complex standards that address any specific case. This specification allows the use of clinical information through existing web technologies (HTTP, HTML, OAuth2, JSON and XML), which everyone can use with no particular training to create and consume this information. The current situation in the sector is that the integration of information is almost nonexistent, compared to current trends. Spending in IT health systems will increase dramatically within clinical integration for the next years, leaving the technical challenges whose costs will recede into the background. The investment on this area will focus on the expectations of what can be obtained in the current trend of personalization of clinical data of patients with access to records of institutions with ‘social /mobile /big data’.
Resumo:
The access to medical literature collections such as PubMed, MedScape or Cochrane has been increased notably in the last years by the web-based tools that provide instant access to the information. However, more sophisticated methodologies are needed to exploit efficiently all that information. The lack of advanced search methods in clinical domain produce that even using well-defined questions for a particular disease, clinicians receive too many results. Since no information analysis is applied afterwards, some relevant results which are not presented in the top of the resultant collection could be ignored by the expert causing an important loose of information. In this work we present a new method to improve scientific article search using patient information for query generation. Using federated search strategy, it is able to simultaneously search in different resources and present a unique relevant literature collection. And applying NLP techniques it presents semantically similar publications together, facilitating the identification of relevant information to clinicians. This method aims to be the foundation of a collaborative environment for sharing clinical knowledge related to patients and scientific publications.
Resumo:
Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01).
Resumo:
Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module.
Resumo:
BACKGROUND: Clinical Trials (CTs) are essential for bridging the gap between experimental research on new drugs and their clinical application. Just like CTs for traditional drugs and biologics have helped accelerate the translation of biomedical findings into medical practice, CTs for nanodrugs and nanodevices could advance novel nanomaterials as agents for diagnosis and therapy. Although there is publicly available information about nanomedicine-related CTs, the online archiving of this information is carried out without adhering to criteria that discriminate between studies involving nanomaterials or nanotechnology-based processes (nano), and CTs that do not involve nanotechnology (non-nano). Finding out whether nanodrugs and nanodevices were involved in a study from CT summaries alone is a challenging task. At the time of writing, CTs archived in the well-known online registry ClinicalTrials.gov are not easily told apart as to whether they are nano or non-nano CTs-even when performed by domain experts, due to the lack of both a common definition for nanotechnology and of standards for reporting nanomedical experiments and results. METHODS: We propose a supervised learning approach for classifying CT summaries from ClinicalTrials.gov according to whether they fall into the nano or the non-nano categories. Our method involves several stages: i) extraction and manual annotation of CTs as nano vs. non-nano, ii) pre-processing and automatic classification, and iii) performance evaluation using several state-of-the-art classifiers under different transformations of the original dataset. RESULTS AND CONCLUSIONS: The performance of the best automated classifier closely matches that of experts (AUC over 0.95), suggesting that it is feasible to automatically detect the presence of nanotechnology products in CT summaries with a high degree of accuracy. This can significantly speed up the process of finding whether reports on ClinicalTrials.gov might be relevant to a particular nanoparticle or nanodevice, which is essential to discover any precedents for nanotoxicity events or advantages for targeted drug therapy.
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.