20 resultados para Climatic drivers
em Universidad Politécnica de Madrid
Resumo:
Purpose Sustainable mobility urban policies intend reducing car use and increasing walking, cycling and public transport. However, this transfer from private car to these more sustainable modes is only a real alternative where distances are small and the public transport supply competitive enough. This paper proposes a methodology to calculate the number of trips that can be transferred from private car to other modes in city centres. Method The method starts analyzing which kind of trips cannot change its mode (purposes, conditions, safety , etc.), and then setting a process to determine under which conditions trips made by car between given O-D pairs can be transferable. Then, the application of demand models allow to determine which trips fulfil the transferability conditions. The process test the possibility of transfer in a sequential way: firs to walking, then cycling and finally to public transport. Results The methodology is tested through its application to the city of Madrid (Spain), with the result of only some 18% of the trips currently made by car could be made by other modes, under the same conditions of trip time, and without affecting their characteristics. Out of these trips, 75% could be made by public transport, 15% cycling and 10% on foot. The possible mode to be transferred depends on the location: city centre areas are more favourable for walking and cycling while city skirts could attract more PT trips. Conclusions The proposed method has demonstrated its validity to determine the potential of transferring trips out of cars to more sustainable modes. Al the same time it is clear that, even in areas with favourable conditions for walking, cycling and PT trips, the potential of transfer is limited because cars fulfil more properly special requirements of some trips and tours.
Resumo:
The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows possible future situations 50 yr from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980–2009 period were obtained and extrapolated with the FAO-56 Penman-Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, taking the concentration of CO2 and the period analyzed (annual or monthly) into consideration. The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11 %) and 55 mm (5 %) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin’s crops
Resumo:
In the face of likely climate change impacts policy makers at different spatial scales need access to assessment tools that enable informed policy instruments to be designed. Recent scientific advances have facilitated the development of improved climate projections, but it remains to be seen whether these are translated into effective adaptation strategies. This paper uses existing databases on climate impacts on European agriculture and combines them with an assessment of adaptive capacity to develop an interdisciplinary approach for prioritising policies. It proposes a method for identifying relevant policies for different EU countries that are representative of various agroclimatic zones. Our analysis presents a framework for integrating current knowledge of future climate impacts with an understanding of the underlying socio-economic, agricultural and environmental traits that determine a region’s capacity for adapting to climate change.
Resumo:
The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600–1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.
Resumo:
Natural regeneration-based silviculture has been increasingly regarded as a reliable option in sustainable forest management. However, successful natural regeneration is not always easy to achieve. Recently, new concerns have arisen because of changing future climate. To date, regeneration models have proved helpful in decision-making concerning natural regeneration. The implementation of such models into optimization routines is a promising approach in providing forest managers with accurate tools for forest planning. In the present study, we present a stochastic multistage regeneration model for Pinus pinea L. managed woodlands in Central Spain, where regeneration has been historically unsuccessful. The model is able to quantify recruitment under different silviculture alternatives and varying climatic scenarios, with further application to optimize management scheduling. The regeneration process in the species showed high between-year variation, with all subprocesses (seed production, dispersal, germination, predation, and seedling survival) having the potential to become bottlenecks. However, model simulations demonstrate that current intensive management is responsible for regeneration failure in the long term. Specifically, stand densities at rotation age are too low to guarantee adequate dispersal, the optimal density of seed-producing trees being around 150 stems·ha−1. In addition, rotation length needs to be extended up to 120 years to benefit from the higher seed production of older trees. Stochastic optimization confirms these results. Regeneration does not appear to worsen under climate change conditions; the species exhibiting resilience worthy of broader consideration in Mediterranean silviculture.
Resumo:
Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logarden in Sweden, Maulde in Belgium CE1, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Godollo in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N2O-N ha−1yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important deter- minant of emissions, accounting for 15 % of the variance (using linear regression) in the data from the arable sites (p<0.0001), and 77 % in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission fac- tors. Variability of N2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation
Resumo:
The aim of this paper is to conceptualise the key value drivers of mass customisation in order to provide a structured approach to explain the added value that customers attribute to mass customised products. We assume that the added value of mass customisation is ultimately reflected in an increased willingness to pay. Previous studies show diverse results concerning customers' willingness to pay for mass customised products. We contribute to the existing body of research by suggesting and discussing the influence of general product characteristics and factors of the mass customisation approach on the key value drivers of mass customisation. Furthermore, the development of a conceptual framework offers explanations for the dissimilarity in customers' willingness to pay and advances the knowledge about the value increment of mass customised products as perceived by customers.
Resumo:
A comprehensive assessment of the liquidity development in the Iberian power futures market managed by OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”) in its first 4 years of existence is performed. This market started on July 2006. A regression model tracking the evolution of the traded volumes in the continuous market is built as a function of 12 potential liquidity drivers. The only significant drivers are the traded volumes in OMIP compulsory auctions, the traded volumes in the “Over The Counter” (OTC) market, and the OTC cleared volumes in OMIP clearing house (OMIClear). Furthermore, the enrollment of financial members shows strong correlation with the traded volumes in the continuous market. OMIP liquidity is still far from the levels reached by the most mature European markets (Nord Pool and EEX). The market operator and its clearing house could develop efficient marketing actions to attract new entrants active in the spot market (energy intensive industries, suppliers, and small producers) as well as volumes from the opaque OTC market, and to improve the performance of existing illiquid products. An active dialogue with all the stakeholders (market participants, spot market operator, and supervisory authorities) will help to implement such actions.
Resumo:
- Context: Pinus pinea L. presents serious problems of natural regeneration in managed forest of Central Spain. The species exhibits specific traits linked to frugivore activity. Therefore, information on plant–animal interactions may be crucial to understand regeneration failure. - Aims: Determining the spatio-temporal pattern of P. pinea seed predation by Apodemus sylvaticus L. and the factors involved. Exploring the importance of A. sylvaticus L. as a disperser of P. pinea. Identifying other frugivores and their seasonal patterns. - Methods: An intensive 24-month seed predation trial was carried out. The probability of seeds escaping predation was modelled through a zero-inflated binomial mixed model. Experiments on seed dispersal by A. sylvaticus were conducted. Cameras were set up to identify other potential frugivores. - Results: Decreasing rodent population in summer and masting enhances seed survival. Seeds were exploited more rapidly nearby parent trees and shelters. A. sylvaticus dispersal activity was found to be scarce. Corvids marginally preyed upon P. pinea seeds. - Conclusions: Survival of P. pinea seeds is climate-controlled through the timing of the dry period together with masting occurrence. Should germination not take place during the survival period, establishment may be limited. A. sylvaticus mediated dispersal does not modify the seed shadow. Seasonality of corvid activity points to a role of corvids in dispersal.
Resumo:
Innovation has been identified as the single most relevant element in fuelling corporations’ competitive advantage and ultimate value creation. Corporations no longer rely on a single, linear structure of innovation; the new paradigm of open innovation opens up new possibilities of organizing innovation within the ecosystem, thus giving rise to new drivers for value creation. These value drivers have an impact on the strategic position of the firm and have the ability to create superior financial performance. In this paper we explore the close relationship between open innovation and value creation and propose a framework to analyze this process as well as the most critical elements involved.
Resumo:
La agricultura es uno de los sectores más afectados por el cambio climático. A pesar de haber demostrado a lo largo de la historia una gran capacidad para adaptarse a nuevas situaciones, hoy en día la agricultura se enfrenta a nuevos retos tales como satisfacer un elevado crecimiento en la demanda de alimentos, desarrollar una agricultura sostenible con el medio ambiente y reducir las emisiones de gases de efecto invernadero. El potencial de adaptación debe ser definido en un contexto que incluya el comportamiento humano, ya que éste juega un papel decisivo en la implementación final de las medidas. Por este motivo, y para desarrollar correctamente políticas que busquen influir en el comportamiento de los agricultores para fomentar la adaptación a estas nuevas condiciones, es necesario entender previamente los procesos de toma de decisiones a nivel individual o de explotación, así como los efectos de los factores que determinan las barreras o motivaciones de la implementación de medidas. Esta Tesis doctoral trata de profundizar en el análisis de factores que influyen en la toma de decisiones de los agricultores para adoptar estrategias de adaptación al cambio climático. Este trabajo revisa la literatura actual y desarrolla un marco metodológico a nivel local y regional. Dos casos de estudio a nivel local (Doñana, España y Makueni, Kenia) han sido llevados a cabo con el fin de explorar el comportamiento de los agricultores hacia la adaptación. Estos casos de estudio representan regiones con notables diferencias en climatología, impactos del cambio climático, barreras para la adaptación y niveles de desarrollo e influencia de las instituciones públicas y privadas en la agricultura. Mientras el caso de estudio de Doñana representa un ejemplo de problemas asociados al uso y escasez del agua donde se espera que se agraven en el futuro, el caso de estudio de Makueni ejemplifica una zona fuertemente amenazada por las predicciones de cambio climático, donde adicionalmente la falta de infraestructura y la tecnología juegan un papel crucial para la implementación de la adaptación. El caso de estudio a nivel regional trata de generalizar en África el comportamiento de los agricultores sobre la implementación de medidas. El marco metodológico que se ha seguido en este trabajo abarca una amplia gama de enfoques y métodos para la recolección y análisis de datos. Los métodos utilizados para la toma de datos incluyen la implementación de encuestas, entrevistas, talleres con grupos de interés, grupos focales de discusión, revisión de estudios previos y bases de datos públicas. Los métodos analíticos incluyen métodos estadísticos, análisis multi‐criterio para la toma de decisiones, modelos de optimización de uso del suelo y un índice compuesto calculado a través de indicadores. Los métodos estadísticos se han utilizado con el fin de evaluar la influencia de los factores socio‐económicos y psicológicos sobre la adopción de medidas de adaptación. Dentro de estos métodos se incluyen regresiones logísticas, análisis de componentes principales y modelos de ecuaciones estructurales. Mientras que el análisis multi‐criterio se ha utilizado con el fin de evaluar las opciones de adaptación de acuerdo a las opiniones de las diferentes partes interesadas, el modelo de optimización ha tenido como fin analizar la combinación óptima de medidas de adaptación. El índice compuesto se ha utilizado para evaluar a nivel regional la implementación de medidas de adaptación en África. En general, los resultados del estudio ponen de relieve la gran importancia de considerar diferentes escalas espaciales a la hora de evaluar la implementación de medidas de adaptación al cambio climático. El comportamiento de los agricultores es diferente entre lugares considerados a una escala local relativamente pequeña, por lo que la generalización de los patrones del comportamiento a escalas regionales o globales resulta relativamente compleja. Los resultados obtenidos han permitido identificar factores determinantes tanto socioeconómicos como psicológicos y calcular su efecto sobre la adopción de medidas de adaptación. Además han proporcionado una mejor comprensión del distinto papel que desempeñan los cinco tipos de capital (natural, físico, financiero, social y humano) en la implementación de estrategias de adaptación. Con este trabajo se proporciona información de gran interés en los procesos de desarrollo de políticas destinadas a mejorar el apoyo de la sociedad a tomar medidas contra el cambio climático. Por último, en el análisis a nivel regional se desarrolla un índice compuesto que muestra la probabilidad de adoptar medidas de adaptación en las regiones de África y se analizan las causas que determinan dicha probabilidad de adopción de medidas. ABSTRACT Agriculture is and will continue to be one of the sectors most affected by climate change. Despite having demonstrated throughout history a great ability to adapt, agriculture today faces new challenges such as meeting growing food demands, developing sustainable agriculture and reducing greenhouse gas emissions. Adaptation policies planned on global, regional or local scales are ultimately implemented in decision‐making processes at the farm or individual level so adaptation potentials have to be set within the context of individual behaviour and regional institutions. Policy instruments can play a formative role in the adoption of such policies by addressing incentives/disincentives that influence farmer’s behaviour. Hence understanding farm‐level decision‐making processes and the influence of determinants of adoption is crucial when designing policies aimed at fostering adoption. This thesis seeks to analyse the factors that influence decision‐making by farmers in relation to the uptake of adaptation options. This work reviews the current knowledge and develops a methodological framework at local and regional level. Whilst the case studies at the local level are conducted with the purpose of exploring farmer’s behaviour towards adaptation the case study at the regional level attempts to up‐scale and generalise theory on adoption of farmlevel adaptation options. The two case studies at the local level (Doñana, Spain and Makueni, Kenya) encompass areas with different; climates, impacts of climate change, adaptation constraints and limits, levels of development, institutional support for agriculture and influence from public and private institutions. Whilst the Doñana Case Study represents an area plagued with water‐usage issues, set to be aggravated further by climate change, Makueni Case study exemplifies an area decidedly threatened by climate change where a lack of infrastructure and technology plays a crucial role in the uptake of adaptation options. The proposed framework is based on a wide range of approaches for collecting and analysing data. The approaches used for data collection include the implementation of surveys, interviews, stakeholder workshops, focus group discussions, a review of previous case studies, and public databases. The analytical methods include statistical approaches, multi criteria analysis for decision‐making, land use optimisation models, and a composite index based on public databases. Statistical approaches are used to assess the influence of socio‐economic and psychological factors on the adoption or support for adaptation measures. The statistical approaches used are logistic regressions, principal component analysis and structural equation modelling. Whilst a multi criteria analysis approach is used to evaluate adaptation options according to the different perspectives of stakeholders, the optimisation model analyses the optimal combination of adaptation options. The composite index is developed to assess adoption of adaptation measures in Africa. Overall, the results of the study highlight the importance of considering various scales when assessing adoption of adaptation measures to climate change. As farmer’s behaviour varies at a local scale there is elevated complexity when generalising behavioural patterns for farmers at regional or global scales. The results identify and estimate the effect of most relevant socioeconomic and psychological factors that influence adoption of adaptation measures to climate change. They also provide a better understanding of the role of the five types of capital (natural, physical, financial, social, and human) on the uptake of farm‐level adaptation options. These assessments of determinants help to explain adoption of climate change measures and provide helpful information in order to design polices aimed at enhancing societal support for adaptation policies. Finally the analysis at the regional level develops a composite index which suggests the likelihood of the regions in Africa to adopt farm‐level adaptation measures and analyses the main causes of this likelihood of adoption.
Resumo:
While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification processes that can lead to the loss of soil nutrients such as N. We evaluated how different climatic, abiotic, plant and nutrient related factors correlate with N availability in semiarid Stipa tenacissima grasslands along a broad aridity gradient from Spain to Tunisia. Aridity had the strongest relationship with N availability, suggesting the importance of abiotic controls on the N cycle in drylands. Aridity appeared to modulate the effects of pH, plant cover and organic C (OC) on N availability. Our results suggest that N transformation rates, which are largely driven by variations in soil moisture, are not the direct drivers of N availability in the studied grasslands. Rather, the strong relationship between aridity and N availability could be driven by indirect effects that operate over long time scales (decades to millennia), including both biotic (e.g. plant cover) and abiotic (e.g. soil OC and pH). If these factors are in fact more important than short-term effects of precipitation on N transformation rates, then we might expect to observe a lagged decrease in N availability in response to increasing aridity. Nevertheless, our results suggest that the increase in aridity predicted with ongoing climate change will reduce N availability in the Mediterranean basin, impacting plant nutrient uptake and net primary production in semiarid grasslands throughout this region.
Resumo:
Vernacular architecture has demonstrated its perfect environmental adaptation through its empirical development and improvement by generations of user-builders. Nowadays, the sustainability of vernacular architecture is the aim of some research projects in which the same method should be applied in order to be comparable. Hence, we propose a research method putting together various steps. Through the analysis of geographical, lithology, economic, cultural and social influence as well as materials and constructive systems, vernacular architecture is analyzed. But, all this information is put together with the natural landscape (topography and vegetation) and the climatic data (temperature, winds, rain and sun exposure). In addition, the use of bioclimatic charts, such as Olgyay or Givoni’s, revealed the necessities and strategies in urban and building design. They are satisfied in the vernacular architecture by the application of different energy conservation mechanisms, some of them are shown by different examples in this paper.
Resumo:
The "Bio-climatic Design Handbook: guidelines for the development of planning regulations" is a tool for urban planning and design professionals planning for the construction of public space taking into account bioclimatic and environmental standards. Based on environmental conditions assessment, urban design guidelines are given. These take into account various scales; from the territory to the microclimatic reality. From these general keys for the design of public space the handbook performs recommendations on specific case studies. The application of bioclimatic techniques in urban design promotes comfort in the public space and the respect for the existing environment, while it influences the energy consumption of buildings that conform this open space. The tool was developed in the context of BIOURB project, where Spain and Portugal cooperate writing this bilingual handbook. The case studies are located in this cross-border region.
Resumo:
En los últimos años, y a la luz de los retos a los que se enfrenta la sociedad, algunas voces están urgiendo a dejar atrás los paradigmas modernos —eficiencia y rendimiento— que sustentan a las llamadas prácticas sostenibles, y están alentando a repensar, en el contexto de los cambios científicos y culturales, una agenda termodinámica y ecológica para la arquitectura. La cartografía que presenta esta tesis doctoral se debe de entender en este contexto. Alineándose con esta necesidad, se esfuerza por dar a este empeño la profundidad histórica de la que carece. De este modo, el esfuerzo por dotar a la arquitectura de una agenda de base científica, se refuerza con una discusión cultural sobre el progresivo empoderamiento de las ideas termodinámicas en la arquitectura. Esta cartografía explora la historia de las ideas termodinámicas en la arquitectura desde el principio del siglo XX hasta la actualidad. Estudia, con el paso de los sistemas en equilibrio a los alejados del equilibrio como trasfondo, como las ideas termodinámicas han ido infiltrándose gradualmente en la arquitectura. Este esfuerzo se ha planteado desde un doble objetivo. Primero, adquirir una distancia crítica respecto de las prácticas modernas, de modo que se refuerce y recalibre el armazón intelectual y las herramientas sobre las que se está apoyando esta proyecto termodinámico. Y segundo, desarrollar una aproximación proyectual sobre la que se pueda fundamentar una agenda termodinámica para la arquitectura, asunto que se aborda desde la firme creencia de que es posible una re-descripción crítica de la realidad. De acuerdo con intercambios de energía que se dan alrededor y a través de un edificio, esta cartografía se ha estructurado en tres entornos termodinámicos, que sintetizan mediante un corte transversal la variedad de intercambios de energía que se dan en la arquitectura: -Cualquier edificio, como constructo espacial y material inmerso en el medio, intercambia energía mediante un flujo bidireccional con su contexto, definiendo un primer entorno termodinámico al que se denomina atmósferas territoriales. -En el interior de los edificios, los flujos termodinámicos entre la arquitectura y su ambiente interior definen un segundo entorno termodinámico, atmósferas materiales, que explora las interacciones entre los sistemas materiales y la atmósfera interior. -El tercer entorno termodinámico, atmosferas fisiológicas, explora los intercambios de energía que se dan entre el cuerpo humano y el ambiente invisible que lo envuelve, desplazando el objeto de la arquitectura desde el marco físico hacia la interacción entre la atmósfera y los procesos somáticos y percepciones neurobiológicas de los usuarios. A través de estos tres entornos termodinámicos, esta cartografía mapea aquellos patrones climáticos que son relevantes para la arquitectura, definiendo tres situaciones espaciales y temporales sobre las que los arquitectos deben actuar. Estudiando las conexiones entre la atmósfera, la energía y la arquitectura, este mapa presenta un conjunto de ideas termodinámicas disponibles —desde los parámetros de confort definidos por la industria del aire acondicionado hasta las técnicas de acondicionamiento pasivo— que, para ser efectivas, necesitan ser evaluadas, sintetizadas y recombinadas a la luz de los retos de nuestro tiempo. El resultado es un manual que, mediando entre la arquitectura y la ciencia, y a través de este relato histórico, acorta la distancia entre la arquitectura y la termodinámica, preparando el terreno para la definición de una agenda termodinámica para el proyecto de arquitectura. A este respecto, este mapa se entiende como uno de los pasos necesarios para que la arquitectura recupere la capacidad de intervenir en la acuciante realidad a la que se enfrenta. ABSTRACT During the last five years, in the light of current challenges, several voices are urging to leave behind the modern energy paradigms —efficiency and performance— on which the so called sustainable practices are relying, and are posing the need to rethink, in the light of the scientific and cultural shifts, the thermodynamic and ecological models for architecture. The historical cartography this PhD dissertation presents aligns with this effort, providing the cultural background that this endeavor requires. The drive to ground architecture on a scientific basis needs to be complemented with a cultural discussion of the history of thermodynamic ideas in architecture. This cartography explores the history of thermodynamic ideas in architecture, from the turn of the 20th century until present day, focusing on the energy interactions between architecture and atmosphere. It surveys the evolution of thermodynamic ideas —the passage from equilibrium to far from equilibrium thermodynamics— and how these have gradually empowered within design and building practices. In doing so, it has posed a double-objective: first, to acquire a critical distance with modern practices which strengthens and recalibrates the intellectual framework and the tools in which contemporary architectural endeavors are unfolding; and second, to develop a projective approach for the development a thermodynamic agenda for architecture and atmosphere, with the firm belief that a critical re-imagination of reality is possible. According to the different systems which exchange energy across a building, the cartography has been structured in three particular thermodynamic environments, providing a synthetic cross-section of the range of thermodynamic exchanges which take place in architecture: -Buildings, as spatial and material constructs immersed in the environment, are subject to a contiuous bidirectional flow of energy with its context, defining a the first thermodynamic environment called territorial atmospheres. -Inside buildings, the thermodynamic flow between architecture and its indoor ambient defines a second thermodynamic environment, material atmospheres, which explores the energy interactions between the indoor atmosphere and its material systems. -The third thermodynamic environment, physiological atmospheres, explores the energy exchanges between the human body and the invisible environment which envelopes it, shifting design drivers from building to the interaction between the atmosphere and the somatic processes and neurobiological perceptions of users. Through these three thermodynamic environments, this cartography maps those climatic patterns which pertain to architecture, providing three situations on which designers need to take stock. Studying the connections between atmosphere, energy and architecture this map presents, not a historical paradigm shift from mechanical climate control to bioclimatic passive techniques, but a range of available thermodynamic ideas which need to be assessed, synthesized and recombined in the light of the emerging challenges of our time. The result is a manual which, mediating between architecture and science, and through this particular historical account, bridges the gap between architecture and thermodynamics, paving the way to a renewed approach to atmosphere, energy and architecture. In this regard this cartography is understood as one of the necessary steps to recuperate architecture’s lost capacity to intervene in the pressing reality of contemporary societies.