8 resultados para Classification de types de pieds

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El incremento de la esperanza de vida en los países desarrollados (más de 80 años en 2013), está suponiendo un crecimiento considerable en la incidencia y prevalencia de enfermedades discapacitantes, que si bien pueden aparecer a edades tempranas, son más frecuentes en la tercera edad, o en sus inmediaciones. Enfermedades neuro-degenerativas que suponen un gran hándicap funcional, pues algunas de ellas están asociadas a movimientos involuntarios de determinadas partes del cuerpo, sobre todo de las extremidades. Tareas cotidianas como la ingesta de alimento, vestirse, escribir, interactuar con el ordenador, etc… pueden llegar a ser grandes retos para las personas que las padecen. El diagnóstico precoz y certero resulta fundamental para la prescripción de la terapia o tratamiento óptimo. Teniendo en cuenta incluso que en muchos casos, por desgracia la mayoría, sólo se puede actuar para mitigar los síntomas, y no para sanarlos, al menos de momento. Aun así, acertar de manera temprana en el diagnóstico supone proporcionar al enfermo una mayor calidad de vida durante mucho más tiempo, por lo cual el esfuerzo merece, y mucho, la pena. Los enfermos de Párkinson y de temblor esencial suponen un porcentaje importante de la casuística clínica en los trastornos del movimiento que impiden llevar una vida normal, que producen una discapacidad física y una no menos importante exclusión social. Las vías de tratamiento son dispares de ahí que sea crítico acertar en el diagnóstico lo antes posible. Hasta la actualidad, los profesionales y expertos en medicina, utilizan unas escalas cualitativas para diferenciar la patología y su grado de afectación. Dichas escalas también se utilizan para efectuar un seguimiento clínico y registrar la historia del paciente. En esta tesis se propone una serie de métodos de análisis y de identificación/clasificación de los tipos de temblor asociados a la enfermedad de Párkinson y el temblor esencial. Empleando técnicas de inteligencia artificial basadas en clasificadores inteligentes: redes neuronales (MLP y LVQ) y máquinas de soporte vectorial (SVM), a partir del desarrollo e implantación de un sistema para la medida y análisis objetiva del temblor: DIMETER. Dicho sistema además de ser una herramienta eficaz para la ayuda al diagnóstico, presenta también las capacidades necesarias para proporcionar un seguimiento riguroso y fiable de la evolución de cada paciente. ABSTRACT The increase in life expectancy in developed countries in more than 80 years (data belongs to 2013), is assuming considerable growth in the incidence and prevalence of disabling diseases. Although they may appear at an early age, they are more common in the elderly ages or in its vicinity. Nuero-degenerative diseases that are a major functional handicap, as some of them are associated with involuntary movements of certain body parts, especially of the limbs. Everyday tasks such as food intake, dressing, writing, interact with the computer, etc ... can become large debris for people who suffer. Early and accurate diagnosis is crucial for prescribing optimal therapy or treatment. Even taking into account that in many cases, unfortunately the majority, can only act to mitigate the symptoms, not to cure them, at least for now. Nevertheless, early diagnosis may provide the patient a better quality of life for much longer time, so the effort is worth, and much, grief. Sufferers of Parkinson's and essential tremor represent a significant percentage of clinical casuistry in movement disorders that prevent a normal life, leading to physical disability and not least social exclusion. There are various treatment methods, which makes it necessary the immediate diagnosis. Up to date, professionals and medical experts, use a qualitative scale to differentiate the disease and degree of involvement. Therefore, those scales are used in clinical follow-up. In this thesis, several methods of analysis and identification / classification of types of tremor associated with Parkinson's disease and essential tremor are proposed. Using artificial intelligence techniques based on intelligent classification: neural networks (MLP and LVQ) and support vector machines (SVM), starting from the development and implementation of a system for measuring and objective analysis of the tremor: DIMETER. This system besides being an effective tool to aid diagnosis, it also has the necessary capabilities to provide a rigorous and reliable monitoring of the evolution of each patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A land classification method was designed for the Community of Madrid (CM), which has lands suitable for either agriculture use or natural spaces. The process started from an extensive previous CM study that contains sets of land attributes with data for 122 types and a minimum-requirements method providing a land quality classification (SQ) for each land. Borrowing some tools from Operations Research (OR) and from Decision Science, that SQ has been complemented by an additive valuation method that involves a more restricted set of 13 representative attributes analysed using Attribute Valuation Functions to obtain a quality index, QI, and by an original composite method that uses a fuzzy set procedure to obtain a combined quality index, CQI, that contains relevant information from both the SQ and the QI methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lacunarity as a means of quantifying textural properties of spatial distributions suggests a classification into three main classes of the most abundant soils that cover 92% of Europe. Soils with a well-defined self-similar structure of the linear class are related to widespread spatial patterns that are nondominant but ubiquitous at continental scale. Fractal techniques have been increasingly and successfully applied to identify and describe spatial patterns in natural sciences. However, objects with the same fractal dimension can show very different optical properties because of their spatial arrangement. This work focuses primary attention on the geometrical structure of the geographical patterns of soils in Europe. We made use of the European Soil Database to estimate lacunarity indexes of the most abundant soils that cover 92% of the surface of Europe and investigated textural properties of their spatial distribution. We observed three main classes corresponding to three different patterns that displayed the graphs of lacunarity functions, that is, linear, convex, and mixed. They correspond respectively to homogeneous or self-similar, heterogeneous or clustered and those in which behavior can change at different ranges of scales. Finally, we discuss the pedological implications of that classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light Detection and Ranging (LIDAR) provides high horizontal and vertical resolution of spatial data located in point cloud images, and is increasingly being used in a number of applications and disciplines, which have concentrated on the exploit and manipulation of the data using mainly its three dimensional nature. Bathymetric LIDAR systems and data are mainly focused to map depths in shallow and clear waters with a high degree of accuracy. Additionally, the backscattering produced by the different materials distributed over the bottom surface causes that the returned intensity signal contains important information about the reflection properties of these materials. Processing conveniently these values using a Simplified Radiative Transfer Model, allows the identification of different sea bottom types. This paper presents an original method for the classification of sea bottom by means of information processing extracted from the images generated through LIDAR data. The results are validated using a vector database containing benthic information derived by marine surveys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Replication plays an important role in experimental disciplines. There are still many uncertain- ties about how to proceed with replications of SE experiments. Should replicators reuse the baseline experiment materials? How much liaison should there be among the original and replicating experiment- ers, if any? What elements of the experimental configuration can be changed for the experiment to be considered a replication rather than a new experiment? Objective: To improve our understanding of SE experiment replication, in this work we propose a classi- fication which is intend to provide experimenters with guidance about what types of replication they can perform. Method: The research approach followed is structured according to the following activities: (1) a litera- ture review of experiment replication in SE and in other disciplines, (2) identification of typical elements that compose an experimental configuration, (3) identification of different replications purposes and (4) development of a classification of experiment replications for SE. Results: We propose a classification of replications which provides experimenters in SE with guidance about what changes can they make in a replication and, based on these, what verification purposes such a replication can serve. The proposed classification helped to accommodate opposing views within a broader framework, it is capable of accounting for less similar replications to more similar ones regarding the baseline experiment. Conclusion: The aim of replication is to verify results, but different types of replication serve special ver- ification purposes and afford different degrees of change. Each replication type helps to discover partic- ular experimental conditions that might influence the results. The proposed classification can be used to identify changes in a replication and, based on these, understand the level of verification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.