31 resultados para Classical orthogonal polynomials
em Universidad Politécnica de Madrid
Resumo:
It is known that some orthogonal systems are mapped onto other orthogonal systems by the Fourier transform. In this article we introduce a finite class of orthogonal functions, which is the Fourier transform of Routh-Romanovski orthogonal polynomials, and obtain its orthogonality relation using Parseval identity.
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
This paper presents a simplified finite element (FE) methodology for solving accurately beam models with (Timoshenko) and without (Bernoulli-Euler) shear deformation. Special emphasis is made on showing how it is possible to obtain the exact solution on the nodes and a good accuracy inside the element. The proposed simplifying concept, denominated as the equivalent distributed load (EDL) of any order, is based on the use of Legendre orthogonal polynomials to approximate the original or acting load for computing the results between the nodes. The 1-span beam examples show that this is a promising procedure that allows the aim of using either one FE and an EDL of slightly higher order or by using an slightly larger number of FEs leaving the EDL in the lowest possible order assumed by definition to be equal to 4 independently of how irregular the beam is loaded.
Resumo:
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. Current improvements of the variational methods are presented.
Resumo:
The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.
Linear global instability of non-orthogonal incompressible swept attachment-line boundary layer flow
Resumo:
Instability of the orthogonal swept attachment line boundary layer has received attention by local1, 2 and global3–5 analysis methods over several decades, owing to the significance of this model to transition to turbulence on the surface of swept wings. However, substantially less attention has been paid to the problem of laminar flow instability in the non-orthogonal swept attachment-line boundary layer; only a local analysis framework has been employed to-date.6 The present contribution addresses this issue from a linear global (BiGlobal) instability analysis point of view in the incompressible regime. Direct numerical simulations have also been performed in order to verify the analysis results and unravel the limits of validity of the Dorrepaal basic flow7 model analyzed. Cross-validated results document the effect of the angle _ on the critical conditions identified by Hall et al.1 and show linear destabilization of the flow with decreasing AoA, up to a limit at which the assumptions of the Dorrepaal model become questionable. Finally, a simple extension of the extended G¨ortler-H¨ammerlin ODE-based polynomial model proposed by Theofilis et al.4 is presented for the non-orthogonal flow. In this model, the symmetries of the three-dimensional disturbances are broken by the non-orthogonal flow conditions. Temporal and spatial one-dimensional linear eigenvalue codes were developed, obtaining consistent results with BiGlobal stability analysis and DNS. Beyond the computational advantages presented by the ODE-based model, it allows us to understand the functional dependence of the three-dimensional disturbances in the non-orthogonal case as well as their connections with the disturbances of the orthogonal stability problem.
Resumo:
Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.
Resumo:
Classical imaging optics has been developed over centuries in many areas, such as its paraxial imaging theory and practical design methods like multi-parametric optimization techniques. Although these imaging optical design methods can provide elegant solutions to many traditional optical problems, there are more and more new design problems, like solar concentrator, illumination system, ultra-compact camera, etc., that require maximum energy transfer efficiency, or ultra-compact optical structure. These problems do not have simple solutions from classical imaging design methods, because not only paraxial rays, but also non-paraxial rays should be well considered in the design process. Non-imaging optics is a newly developed optical discipline, which does not aim to form images, but to maximize energy transfer efficiency. One important concept developed from non-imaging optics is the “edge-ray principle”, which states that the energy flow contained in a bundle of rays will be transferred to the target, if all its edge rays are transferred to the target. Based on that concept, many CPC solar concentrators have been developed with efficiency close to the thermodynamic limit. When more than one bundle of edge-rays needs to be considered in the design, one way to obtain solutions is to use SMS method. SMS stands for Simultaneous Multiple Surface, which means several optical surfaces are constructed simultaneously. The SMS method was developed as a design method in Non-imaging optics during the 90s. The method can be considered as an extension to the Cartesian Oval calculation. In the traditional Cartesian Oval calculation, one optical surface is built to transform an input wave-front to an out-put wave-front. The SMS method however, is dedicated to solve more than 1 wave-fronts transformation problem. In the beginning, only 2 input wave-fronts and 2 output wave-fronts transformation problem was considered in the SMS design process for rotational optical systems or free-form optical systems. Usually “SMS 2D” method stands for the SMS procedure developed for rotational optical system, and “SMS 3D” method for the procedure for free-form optical system. Although the SMS method was originally employed in non-imaging optical system designs, it has been found during this thesis that with the improved capability to design more surfaces and control more input and output wave-fronts, the SMS method can also be applied to imaging system designs and possesses great advantage over traditional design methods. In this thesis, one of the main goals to achieve is to further develop the existing SMS-2D method to design with more surfaces and improve the stability of the SMS-2D and SMS-3D algorithms, so that further optimization process can be combined with SMS algorithms. The benefits of SMS plus optimization strategy over traditional optimization strategy will be explained in details for both rotational and free-form imaging optical system designs. Another main goal is to develop novel design concepts and methods suitable for challenging non-imaging applications, e.g. solar concentrator and solar tracker. This thesis comprises 9 chapters and can be grouped into two parts: the first part (chapter 2-5) contains research works in the imaging field, and the second part (chapter 6-8) contains works in the non-imaging field. In the first chapter, an introduction to basic imaging and non-imaging design concepts and theories is given. Chapter 2 presents a basic SMS-2D imaging design procedure using meridian rays. In this chapter, we will set the imaging design problem from the SMS point of view, and try to solve the problem numerically. The stability of this SMS-2D design procedure will also be discussed. The design concepts and procedures developed in this chapter lay the path for further improvement. Chapter 3 presents two improved SMS 3 surfaces’ design procedures using meridian rays (SMS-3M) and skew rays (SMS-1M2S) respectively. The major improvement has been made to the central segments selections, so that the whole SMS procedures become more stable compared to procedures described in Chapter 2. Since these two algorithms represent two types of phase space sampling, their image forming capabilities are compared in a simple objective design. Chapter 4 deals with an ultra-compact SWIR camera design with the SMS-3M method. The difficulties in this wide band camera design is how to maintain high image quality meanwhile reduce the overall system length. This interesting camera design provides a playground for the classical design method and SMS design methods. We will show designs and optical performance from both classical design method and the SMS design method. Tolerance study is also given as the end of the chapter. Chapter 5 develops a two-stage SMS-3D based optimization strategy for a 2 freeform mirrors imaging system. In the first optimization phase, the SMS-3D method is integrated into the optimization process to construct the two mirrors in an accurate way, drastically reducing the unknown parameters to only few system configuration parameters. In the second optimization phase, previous optimized mirrors are parameterized into Qbfs type polynomials and set up in code V. Code V optimization results demonstrates the effectiveness of this design strategy in this 2-mirror system design. Chapter 6 shows an etendue-squeezing condenser optics, which were prepared for the 2010 IODC illumination contest. This interesting design employs many non-imaging techniques such as the SMS method, etendue-squeezing tessellation, and groove surface design. This device has theoretical efficiency limit as high as 91.9%. Chapter 7 presents a freeform mirror-type solar concentrator with uniform irradiance on the solar cell. Traditional parabolic mirror concentrator has many drawbacks like hot-pot irradiance on the center of the cell, insufficient use of active cell area due to its rotational irradiance pattern and small acceptance angle. In order to conquer these limitations, a novel irradiance homogenization concept is developed, which lead to a free-form mirror design. Simulation results show that the free-form mirror reflector has rectangular irradiance pattern, uniform irradiance distribution and large acceptance angle, which confirm the viability of the design concept. Chapter 8 presents a novel beam-steering array optics design strategy. The goal of the design is to track large angle parallel rays by only moving optical arrays laterally, and convert it to small angle parallel output rays. The design concept is developed as an extended SMS method. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination. Conclusion and future lines of work are given in Chapter 9. Resumen La óptica de formación de imagen clásica se ha ido desarrollando durante siglos, dando lugar tanto a la teoría de óptica paraxial y los métodos de diseño prácticos como a técnicas de optimización multiparamétricas. Aunque estos métodos de diseño óptico para formación de imagen puede aportar soluciones elegantes a muchos problemas convencionales, siguen apareciendo nuevos problemas de diseño óptico, concentradores solares, sistemas de iluminación, cámaras ultracompactas, etc. que requieren máxima transferencia de energía o dimensiones ultracompactas. Este tipo de problemas no se pueden resolver fácilmente con métodos clásicos de diseño porque durante el proceso de diseño no solamente se deben considerar los rayos paraxiales sino también los rayos no paraxiales. La óptica anidólica o no formadora de imagen es una disciplina que ha evolucionado en gran medida recientemente. Su objetivo no es formar imagen, es maximazar la eficiencia de transferencia de energía. Un concepto importante de la óptica anidólica son los “rayos marginales”, que se pueden utilizar para el diseño de sistemas ya que si todos los rayos marginales llegan a nuestra área del receptor, todos los rayos interiores también llegarán al receptor. Haciendo uso de este principio, se han diseñado muchos concentradores solares que funcionan cerca del límite teórico que marca la termodinámica. Cuando consideramos más de un haz de rayos marginales en nuestro diseño, una posible solución es usar el método SMS (Simultaneous Multiple Surface), el cuál diseña simultáneamente varias superficies ópticas. El SMS nació como un método de diseño para óptica anidólica durante los años 90. El método puede ser considerado como una extensión del cálculo del óvalo cartesiano. En el método del óvalo cartesiano convencional, se calcula una superficie para transformar un frente de onda entrante a otro frente de onda saliente. El método SMS permite transformar varios frentes de onda de entrada en frentes de onda de salida. Inicialmente, sólo era posible transformar dos frentes de onda con dos superficies con simetría de rotación y sin simetría de rotación, pero esta limitación ha sido superada recientemente. Nos referimos a “SMS 2D” como el método orientado a construir superficies con simetría de rotación y llamamos “SMS 3D” al método para construir superficies sin simetría de rotación o free-form. Aunque el método originalmente fue aplicado en el diseño de sistemas anidólicos, se ha observado que gracias a su capacidad para diseñar más superficies y controlar más frentes de onda de entrada y de salida, el SMS también es posible aplicarlo a sistemas de formación de imagen proporcionando una gran ventaja sobre los métodos de diseño tradicionales. Uno de los principales objetivos de la presente tesis es extender el método SMS-2D para permitir el diseño de sistemas con mayor número de superficies y mejorar la estabilidad de los algoritmos del SMS-2D y SMS-3D, haciendo posible combinar la optimización con los algoritmos. Los beneficios de combinar SMS y optimización comparado con el proceso de optimización tradicional se explican en detalle para sistemas con simetría de rotación y sin simetría de rotación. Otro objetivo importante de la tesis es el desarrollo de nuevos conceptos de diseño y nuevos métodos en el área de la concentración solar fotovoltaica. La tesis está estructurada en 9 capítulos que están agrupados en dos partes: la primera de ellas (capítulos 2-5) se centra en la óptica formadora de imagen mientras que en la segunda parte (capítulos 6-8) se presenta el trabajo del área de la óptica anidólica. El primer capítulo consta de una breve introducción de los conceptos básicos de la óptica anidólica y la óptica en formación de imagen. El capítulo 2 describe un proceso de diseño SMS-2D sencillo basado en los rayos meridianos. En este capítulo se presenta el problema de diseñar un sistema formador de imagen desde el punto de vista del SMS y se intenta obtener una solución de manera numérica. La estabilidad de este proceso se analiza con detalle. Los conceptos de diseño y los algoritmos desarrollados en este capítulo sientan la base sobre la cual se realizarán mejoras. El capítulo 3 presenta dos procedimientos para el diseño de un sistema con 3 superficies SMS, el primero basado en rayos meridianos (SMS-3M) y el segundo basado en rayos oblicuos (SMS-1M2S). La mejora más destacable recae en la selección de los segmentos centrales, que hacen más estable todo el proceso de diseño comparado con el presentado en el capítulo 2. Estos dos algoritmos representan dos tipos de muestreo del espacio de fases, su capacidad para formar imagen se compara diseñando un objetivo simple con cada uno de ellos. En el capítulo 4 se presenta un diseño ultra-compacto de una cámara SWIR diseñada usando el método SMS-3M. La dificultad del diseño de esta cámara de espectro ancho radica en mantener una alta calidad de imagen y al mismo tiempo reducir drásticamente sus dimensiones. Esta cámara es muy interesante para comparar el método de diseño clásico y el método de SMS. En este capítulo se presentan ambos diseños y se analizan sus características ópticas. En el capítulo 5 se describe la estrategia de optimización basada en el método SMS-3D. El método SMS-3D calcula las superficies ópticas de manera precisa, dejando sólo unos pocos parámetros libres para decidir la configuración del sistema. Modificando el valor de estos parámetros se genera cada vez mediante SMS-3D un sistema completo diferente. La optimización se lleva a cabo variando los mencionados parámetros y analizando el sistema generado. Los resultados muestran que esta estrategia de diseño es muy eficaz y eficiente para un sistema formado por dos espejos. En el capítulo 6 se describe un sistema de compresión de la Etendue, que fue presentado en el concurso de iluminación del IODC en 2010. Este interesante diseño hace uso de técnicas propias de la óptica anidólica, como el método SMS, el teselado de las lentes y el diseño mediante grooves. Este dispositivo tiene un límite teórica en la eficiencia del 91.9%. El capítulo 7 presenta un concentrador solar basado en un espejo free-form con irradiancia uniforme sobre la célula. Los concentradores parabólicos tienen numerosas desventajas como los puntos calientes en la zona central de la célula, uso no eficiente del área de la célula al ser ésta cuadrada y además tienen ángulos de aceptancia de reducido. Para poder superar estas limitaciones se propone un novedoso concepto de homogeneización de la irrandancia que se materializa en un diseño con espejo free-form. El análisis mediante simulación demuestra que la irradiancia es homogénea en una región rectangular y con mayor ángulo de aceptancia, lo que confirma la viabilidad del concepto de diseño. En el capítulo 8 se presenta un novedoso concepto para el diseño de sistemas afocales dinámicos. El objetivo del diseño es realizar un sistema cuyo haz de rayos de entrada pueda llegar con ángulos entre ±45º mientras que el haz de rayos a la salida sea siempre perpendicular al sistema, variando únicamente la posición de los elementos ópticos lateralmente. Las aplicaciones potenciales de este dispositivo son varias: tragaluces que proporcionan iluminación natural, sistemas de concentración fotovoltaica integrados en los edificios o iluminación direccionable con LEDs. Finalmente, el último capítulo contiene las conclusiones y las líneas de investigación futura.
Resumo:
The aim of this thesis is to study the mechanisms of instability that occur in swept wings when the angle of attack increases. For this, a simplified model for the a simplified model for the non-orthogonal swept leading edge boundary layer has been used as well as different numerical techniques in order to solve the linear stability problem that describes the behavior of perturbations superposed upon this base flow. Two different approaches, matrix-free and matrix forming methods, have been validated using direct numerical simulations with spectral resolution. In this way, flow instability in the non-orthogonal swept attachment-line boundary layer is addressed in a linear analysis framework via the solution of the pertinent global (Bi-Global) PDE-based eigenvalue problem. Subsequently, a simple extension of the extended G¨ortler-H¨ammerlin ODEbased polynomial model proposed by Theofilis, Fedorov, Obrist & Dallmann (2003) for orthogonal flow, which includes previous models as particular cases and recovers global instability analysis results, is presented for non-orthogonal flow. Direct numerical simulations have been used to verify the stability results and unravel the limits of validity of the basic flow model analyzed. The effect of the angle of attack, AoA, on the critical conditions of the non-orthogonal problem has been documented; an increase of the angle of attack, from AoA = 0 (orthogonal flow) up to values close to _/2 which make the assumptions under which the basic flow is derived questionable, is found to systematically destabilize the flow. The critical conditions of non-orthogonal flows at 0 _ AoA _ _/2 are shown to be recoverable from those of orthogonal flow, via a simple analytical transformation involving AoA. These results can help to understand the mechanisms of destabilization that occurs in the attachment line of wings at finite angles of attack. Studies taking into account variations of the pressure field in the basic flow or the extension to compressible flows are issues that remain open. El objetivo de esta tesis es estudiar los mecanismos de la inestabilidad que se producen en ciertos dispositivos aerodinámicos cuando se aumenta el ángulo de ataque. Para ello se ha utilizado un modelo simplificado del flujo de base, así como diferentes técnicas numéricas, con el fin de resolver el problema de estabilidad lineal asociado que describe el comportamiento de las perturbaciones. Estos métodos; sin y con formación de matriz, se han validado utilizando simulaciones numéricas directas con resolución espectral. De esta manera, la inestabilidad del flujo de capa límite laminar oblicuo entorno a la línea de estancamiento se aborda en un marco de análisis lineal por medio del método Bi-Global de resolución del problema de valores propios en derivadas parciales. Posteriormente se propone una extensión simple para el flujo no-ortogonal del modelo polinomial de ecuaciones diferenciales ordinarias, G¨ortler-H¨ammerlin extendido, propuesto por Theofilis et al. (2003) para el flujo ortogonal, que incluye los modelos previos como casos particulares y recupera los resultados del analisis global de estabilidad lineal. Se han realizado simulaciones directas con el fin de verificar los resultados del análisis de estabilidad así como para investigar los límites de validez del modelo de flujo base utilizado. En este trabajo se ha documentado el efecto del ángulo de ataque AoA en las condiciones críticas del problema no ortogonal obteniendo que el incremento del ángulo de ataque, de AoA = 0 (flujo ortogonal) hasta valores próximos a _/2, en el cual las hipótesis sobre las que se basa el flujo base dejan de ser válidas, tiende sistemáticamente a desestabilizar el flujo. Las condiciones críticas del caso no ortogonal 0 _ AoA _ _/2 pueden recuperarse a partir del caso ortogonal mediante el uso de una transformación analítica simple que implica el ángulo de ataque AoA. Estos resultados pueden ayudar a comprender los mecanismos de desestabilización que se producen en el borde de ataque de las alas de los aviones a ángulos de ataque finitos. Como tareas pendientes quedaría realizar estudios que tengan en cuenta variaciones del campo de presión en el flujo base así como la extensión de éste al caso de flujos compresibles.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
Ponencia
Resumo:
An innovative dissipative multi-beam network for triangular arrays of three radiating elements is proposed. This novel network provides three orthogonal beams in θ0 elevation angle and a fourth one in the broadside steering direction. The network is composed of 90º hybrid couplers and fixed phase shifters. In this paper, a relation between network components, radiating element distance and beam steering directions will be shown. Application of the proposed dissipative network to the triangular cells of three radiating elements that integrate the intelligent antenna GEODA will be exhibited. This system works at 1.7 GHz, it has a 60º single radiating element beamwidth and a distance between array elements of 0.57 λ. Both beam patterns, theoretical and simulated, obtained with the network will be depicted. Moreover, the whole system, dissipative network built with GEODA cell array, has been measured in the anechoic chamber of the Radiation Group of Technical University of Madrid, demonstrating expected performance.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Los años cincuenta y sesenta son los años de la incorporación definitiva de la arquitectura española al panorama internacional. Entre los arquitectos que protagonizan ese salto sin retorno, se encuentra el grupo de aquellos que unos años más tarde serán denominados por Juan Daniel Fullaondo como Escuela de Madrid. Carlos Flores, en su libro Arquitectura Española Contemporánea 1880-1950, se refiere a esos arquitectos como aquellos que se aplicaban a la difícil tarea de restablecer en España un tipo de arquitectura que conectaba con las teorías, soluciones y lenguajes establecidos por Europa durante las primeras décadas del siglo XX. Sigfried Giedion plantea en Espacio, Tiempo y Arquitectura el origen de una nueva tradición, surgida a partir de la revolución óptica de principios de siglo. Con tradición se refiere a una nueva cultura, que abarca la interrelación de las diferentes actividades del hombre: la similitud de los métodos que se usan en la arquitectura, la construcción, la pintura, el urbanismo o la ciencia. Esa novedad, fundamentada en su independencia y desvinculación con el periodo anterior, se inscribe dentro del esquema evolutivo que Thomas Kuhn plantea en su texto La Estructura de la Revoluciones Científicas, conforme a periodos no acumulativos. Kuhn habla del surgimiento de anomalías en cada periodo, origen de las crisis de pensamiento cuya explicación precisará un necesario cambio paradigmático. En la ciencia, en el campo de la óptica Thomas Young demuestra a principios del siglo XIX la naturaleza ondulatoria de la luz con su experimento de doble rendija; en el electromagnetismo se produce el salto conceptual que supone la postulación de la existencia del campo eléctrico por parte de Michael Faraday, y en termodinámica la consideración apuntada por Planck de que la radiación de la energía de produce de forma discreta, a través de cuantos. En las artes plásticas, paralelamente, Gleizes y Metzinger, en su recopilación de logros cubistas recogida en Sobre el Cubismo, hablan de la evolución sufrida durante el siglo XIX por la pintura: desde el idealismo de principios de siglo, para pasando por el realismo y la representación impresionista de la realidad, concluir prescindiendo de la perspectiva clásica. También la matemática, una vez desarrolladas por Gauss o Lobachevsky y Bolyai geometrías coherentes que incumplen el quinto postulado de Euclides, terminará dando validez a través de Riemann a los espacios ambiente en los que habitan dichas geometrías, desvinculando la relación directa entre espacio geométrico –el espacio ambiente al que da lugar un tipo de geometría- y el espacio físico. Capi Corrales refleja en su libro Contando el Espacio, cómo hasta la teoría de la relatividad y el cubismo, las geometrías no euclídeas no se hicieron notorias también fuera del campo de las matemáticas. El origen de la nueva tradición con la que Giedion se refiere a la nueva cultura de la modernidad coincide con los saltos paradigmáticos que suponen la teoría de la relatividad en las ciencias y el cubismo en las artes plásticas. Ambas se prolongan durante las primeras décadas hasta la teoría cuántica y la abstracción absoluta, barreras que los dos principales precursores de la relatividad y el cubismo, Einstein y Picasso, nunca llegan a franquear. En ese sentido Giedion habla también, además del origen, de su desarrollo, e incorpora las aportaciones periféricas en la arquitectura de Brasil, Japón o Finlandia, incluyendo por tanto la revisión orgánica propugnada por Zevi como parte de esa nueva tradición, quedando abierta a la incorporación tardía de nuevas aportaciones al desarrollo de esa cultura de la modernidad. Eliminado el concepto de la estética trascendental de Kant del tiempo como una referencia absoluta, y asumido el valor constante de la velocidad de la luz, para la teoría de la relatividad no existe una simultaneidad auténtica. Queda así fijada la velocidad de la luz como uno de los límites del universo, y la equivalencia entre masa y energía. En el cubismo la simultaneidad espacial viene motivada por la eliminación del punto de vista preferente, cuyo resultado es la multiplicidad descriptiva de la realidad, que se visualiza en la descomposición en planos, tanto del objeto como del espacio, y la consecuente continuidad entre fondo y figura que en arquitectura se refleja en la continuidad entre edificio y territorio. Sin la consideración de un punto de vista absoluto, no existe una forma auténtica. El cubismo, y su posterior desarrollo por las vanguardias plásticas, hacen uso de la geometría como mecanismo de recomposición de la figura y el espacio, adoptando mecanismos de penetración, superposición y transparencia. Gyorgy Kepes indica en El Lenguaje de la Visión que la descomposición cubista del objeto implica la sucesiva autonomía de los planos, hasta convertirse en elementos constituyentes. Algo que refleja las axonometrías arquitectónicas de Van Doesburg y que culmina con los espacios propuestos por Mies van der Rohe en sus primeros proyectos europeos. Estos mecanismos, encuentran eco en los primeros planteamientos de Javier Carvajal: en la ampliación del Panteón de españoles del cementerio de Campo Verano, un recinto virtual reconstruido mentalmente a partir del uso de tres únicos planos; o en el Pabellón de Nueva York, que organiza su planta baja desde el recorrido, introduciendo el parámetro temporal como una dimensión más. Al uso diferenciado del plano como elemento constituyente, Carvajal incorpora su plegado y su disposición conformando envolventes como mecanismo de cualificación espacial y formal, potenciando la prolongación entre arquitectura y territorio. Una continuidad que quedará culminada en las dos viviendas unifamiliares construidas en Somosaguas. La descomposición volumétrica conduce a unos niveles de abstracción que hace precisa la incorporación de elementos de la memoria -fuentes, patios, celosías…- a modo de red de señales, como las que Picasso y Braque introducen en sus cuadros para permitir su interpretación. Braque insiste en el interés por el espacio que rodea a los objetos. Una búsqueda de la tactilidad del espacio contraria a la perspectiva que aleja el objeto del observador, y que en los jardines de las viviendas de Somosaguas parece emanar de su propia materialidad. Un espacio táctil alejado del espacio geométrico y que Braque identifica con el espacio representativo en el que Poincaré, en La Ciencia y la Hipótesis, ubica nuestras sensaciones. Desdibujar los límites del objeto prolonga el espacio indefinidamente. Con el paso en el arte griego del mito al logos, se abre paso a la matemática como herramienta de comprensión de la naturaleza hasta el siglo XIX. Leon Lederman, en Simetría y la Belleza del Universo, apunta a que una de las mayores contribuciones de la teoría de Einstein es hacer cambiar el modo de pensar la naturaleza, orientándolo hacia la búsqueda de los principios de simetría que subyacen bajo las leyes físicas. Considerando que la simetría es la invariancia de un objeto o un sistema frente a una transformación y que las leyes físicas son las mismas en cualquier punto del espacio, el espacio de nuestro universo posee una simetría traslacional continua. En la ocupación del espacio de las primeras propuestas de Corrales y Molezún aparecen estructuras subyacentes que responden a enlosetados: paralelogramos sometidos a transformaciones continuas, que la naturaleza identifica tridimensionalmente con los grupos cristalográficos. Las plantas del museo de Arte Contemporáneo de la Castellana, la residencia de Miraflores, el pabellón de Bruselas o la torre Peugeot pertenecen a este grupo. La arquitectura como proceso de ocupación continua del territorio y de su trasposición al plano de cubierta, se materializa en líneas estructurales coincidentes con la estructura matemática de sus simetrías de traslación cuya posibilidad de prolongación infinita queda potenciada por el uso de la envolvente transparente. Junto a esta transparencia literal, inherente al material, Colin Rowe y Robert Slutzky nos alertan sobre otra transparencia inherente a la estructura: la transparencia fenomenal, ilustrada por los cuadros de Juan Gris, y cuya intuición aparece reflejada en la casa Huarte en Puerta de Hierro de Madrid. Corrales y Molezún insisten en una lectura de su volumetría alejada de la frontalidad, en la que los contornos de sus cubiertas inclinadas y las visuales tangenciales sugeridas por la organización de sus recorridos introducen una estructura diagonal que se superpone al entendimiento ortogonal de su planta, dibujando una intrincada red de líneas quebradas que permiten al espacio fluctuar entre las secuencia volumétrica propuesta. Los datos relativos al contenido energético de la luz y el concepto de átomo parten de la consideración de la emisión de energía en cuantos realizada por Planck, y concluyen con una circunstancia paradójica: la doble naturaleza de la luz -demostrada por la explicación de Einstein del efecto fotoeléctrico- y la doble naturaleza de la materia -asumida por Bohr y demostrada por el efecto Compton-. Schrödinger y Heisenberg formularán finalmente la ecuación universal del movimiento que rige en las ondas de materia, y cuya representación matemática es lo que se conoce como función de onda. El objeto es así identificado con su función de onda. Su ondulatoriedad expresará la probabilidad de encontrarse en un lugar determinado. Gyorgy Kepes subraya la necesidad de simplificar el lenguaje para pasar de la objetividad que aún permanece en la pintura cubista a la abstracción total del espacio. Y es así como los artistas plásticos reducen los objetos a simples formas geométricas, haciendo aflorar a la vez, las fuerzas plásticas que los tensionan o equilibran, en un proceso que acaba por eliminar cualquier atisbo de materia. Robert Rosenblum en La Pintura Moderna y la Tradición del Romanticismo Nórdico habla de cómo ese rechazo de la materia en favor de un vacío casi impalpable, campos luminosos de color denso que difunden un sereno resplandor y parecen engendrar las energías elementales de la luz natural, está directamente vinculado a la relación con la naturaleza que establece el romanticismo nórdico. La expresión de la energía de la naturaleza concentrada en un vacío que ya había sido motivo de reflexión para Michael Faraday en su postulación del concepto de campo eléctrico. Sáenz de Oíza incide en la expresión de la condición material de la energía en su propuesta junto a José Luis Romany para la capilla en el Camino de Santiago. La evocación de diferentes fuerzas electromagnéticas, las únicas junto a las gravitatorias susceptibles de ser experimentadas por el hombre, aparecerán visualizadas también en el carácter emergente de algunas de sus obras: el Santuario de Aránzazu o Torres Blancas; pero también en la naturaleza fluyente de sus contornos, la dispersión perimetral de los espacios -el umbral como centro del universoo la configuración del límite como respuesta a las tensiones germinales de la naturaleza. Miguel Fisac, a la vuelta de su viaje a los países nórdicos, aborda una simplificación lingüística orientada hacia la adecuación funcional de los espacios. En el Instituto de Daimiel, el Instituto de formación del profesorado o los complejos para los Padres Dominicos en Valladolid o Alcobendas, organiza progresivamente la arquitectura en diferentes volúmenes funcionales, incidiendo de un modo paralelo en la manifestación de los vínculos que se establecen entre dichos volúmenes como una visualización de las fuerzas que los tensionan y equilibran. En ellos la prolongación de la realidad física más allá de los límites de la envolvente ya es algo más que una simple intuición. Un proceso en el que el tratamiento de la luz como un material de construcción más, tendrá un especial protagonismo. En la iglesia de la Coronación, la iluminación del muro curvo escenifica la condición ondulatoria de la luz, manifestándose como si de un patrón de interferencia se tratara. Frente a la disolución de lo material, el espacio se manifiesta aquí como un medio denso, alejado de la tradicional noción de vacío. Una doble naturaleza, onda y partícula, que será intuido también por Fisac en la materia a través de su uso comprometido del hormigón como único material de construcción. Richard Feynmann nos alerta de la ocupación del espacio por multitud de fuerzas electromagnéticas que, al igual que la luz, precisan de receptores específicos para captar su presencia. Sus célebres diagramas suponen además la visualización definitiva de los procesos subatómicos. Al igual que la abstracción absoluta en las artes plásticas, esas representaciones diagramáticas no son asimilables a imágenes obtenidas de nuestra experiencia. Una intuición plasmada en el uso del diagrama, que irán adquiriendo progresivamente los dibujos de Alejandro de la Sota. La sección del gimnasio Maravillas recoge los trazos de sus principales elementos constructivos: estructura, cerramientos, compartimentaciones…, pero también, y con la misma intensidad, los de las fuerzas que generan su espacio, considerando así su condición de elementos constituyentes. El vacío, nos deja claro Sota, es el lugar donde habitan dichas tensiones. La posterior simplificación de las formas acompañadas de la obsesión por su aligeramiento, la casi desaparición de la envolvente, incide en aquella idea con la que Paul Klee define la actividad del artista en su Teoría del Arte Moderno, y en la que se transmite el distanciamiento hacia lo aparente: No se trata de reproducir lo visible, se trata de volver visible. Así, en Bankunión y Aviaco, como en tantos otros proyectos, frente al objetivo de la forma, Sota plantea el límite como la acotación de un ámbito de actuación. Su propia representación aséptica y diagramática transmite la renuncia a una especificidad espacial. Gilles Deleuze expresa ese posicionamiento en Pintura, el Concepto de Diagrama: el diagrama como la posibilidad de cuadros infinitos, o la posibilidad infinita de cuadros. Aparece así una concepción probabilística del espacio en la que frente a la renuncia por la forma, la tendencia al aligeramiento, y lo difuso de su definición – ideas claras, definición borrosa, en palabras de Llinás referidas al modo de operar de Sota-, la insistente atención a algunos elementos como escaleras, protecciones o miradores parece trasmitir la idea de que la arquitectura queda condensada en aquellos acontecimientos que delatan su condición dinámica, transitoria. Primando la relación frente al objeto, el vínculo frente a lo tangible. English summary. The fifties and sixties were the years of the final incorporation of Spanish architecture to the international scene. Among the architects who star that no return leap, is the group of those who a few years later will be named by Juan Daniel Fullaondo as Escuela de Madrid. Carlos Flores, in his book Arquitectura Española Contemporánea 1880-1950, refers to those architects as those that applied to the difficult task of restoring in Spain an architecture that connected with theories, solutions and established languages in Europe during the first decades of the twentieth century. Sigfried Giedion proposes in Space, Time and Architecture, the origin of a new tradition, arising from the optical revolution at the beginning of the century. With tradition he refers to a new culture, covering the interplay of different human activities: the similarity of the methods used in architecture, building, painting, urban planning or science. This new feature, based on its independence and detachment from the previous period, is part of the evolutionary scheme that Thomas Kuhn proposes in his text The Structure of Scientific Revolutions, according to non-accumulative periods. Kuhn talks about the emergence of anomalies in each period, origin of thought crisis whose explanation will require a paradigm shift needed. In science, in the field of optical Thomas Young demonstrates at the early nineteenth century the wave nature of light with its double-slit experiment , in electromagnetism the postulation of the existence of the electric field by Michael Faraday involves a conceptual leap, and in thermodynamic, the consideration pointed by Planck about quantum energy radiation. In the arts, in a parallel process, Gleizes and Metzinger , in his collection of cubism achievements on their book Du Cubisme, speak of evolution occurring during the nineteenth century by the painting: from the idealism of beginning of the century, going for realism and impressionist representation of reality, and finishing regardless of the classical perspective . Mathematics also, once developed by Gauss and Lobachevsky and Bolyai consistent geometries that violate Euclid's fifth postulate , will end validating Riemann’s ambient spaces in which these geometries inhabit, decoupling the direct relationship between geometric space -the space environment that results in a type of geometry- , and physical space. Capi Corrales reflectes in his book Contando el Espacio, that non-Euclidean geometries were not noticeable outside the field of mathematics until the theory of relativity and cubism. The origin of the new tradition that Giedion relates to the new culture of modernity coincides with paradigmatic leaps pointed by the theory of relativity in science and Cubism in the visual arts. Both are extended during the first decades until quantum theory and absolute abstraction, barriers that the two main precursors of relativity and cubism, Einstein and Picasso never overcome. In that sense Giedion speaks about the origin, but also the development, and incorporates peripheral inputs from Brazil, Japan and Finland architecture, thus including organic revision advocated by Zevi as part of this new tradition, being open to the late addition of new contributions to the development of that culture of modernity. Removed the concept of Kant's transcendental aesthetics, of time as an absolute reference, and assumed the constant value of the speed of light, theory of relativity says there is no authentic concurrency. It is thus fixed the speed of light as one of the limits of the universe, and the equivalence of mass and energy. In cubism, spatial simultaneity results from the elimination of preferential points of view, resulting in the multiplicity descriptive of reality, which is displayed in decomposition levels, both the object and the space, and the resulting continuity between figure and background that architecture is reflected in the continuity between building and land. Without the consideration of an absolute point of view, there isn’t an authentic shape. Cubism, and its subsequent development by the vanguard arts, make use of geometry as a means of rebuilding the figure and space, taking penetration mechanisms, overlapping and transparency. Gyorgy Kepes suggest in Languaje of Vision, that cubist decomposition of the object involves successive planes autonomy, to become constituent elements. Something that reflects the Van Doesburg’s architectural axonometrics and culminates with the spaces proposed by Mies van der Rohe in his first European projects. These mechanisms are reflected in the first approaches by Javier Carvajal: the extension of Spanish Pantheon in Campo Verano Cemetery, virtual enclosure mentally reconstructed from 24 the use of only three planes, or in the Spanish Pavilion of New York, which organizes its ground floor from the tour, introducing the time parameter as an additional dimension. Carvajal adds to the differential use of the plane as a constituent, Carvajal incorporates its folding and forming enclosures available as a mechanism for spatial and formal qualification, promoting the extension between architecture and territory. A continuity that will be completed in the two houses built in Somosaguas. Volumetric decomposition, as the fragmentation achieved in the last cubist experiences, needs the incorporation of elements of memory - fountains, patios, shutters...- as a network of signals, such as those introduced by Picasso and Braque in their paintings to allow their interpretation. Braque insists in his interest in the space surrounding the objects. A search of the tactility of space contrary to the perspective, which moves the observer away from the object, and that in the gardens of Somosaguas seems to emanate from its own materiality. A tactile space away from the geometric space and Braque identified with the representative space in which Poincaré in La Science et l´hypothèse, located our feelings. To blur those boundaries of the object extends the space indefinitely. With the passage in Greek art from myth to logos, it opens up to mathematics as a tool for understanding the nature until the nineteenth century. Leon Lederman, in Symmetry and beautiful Universe, suggests that one of the greatest contributions of Einstein's theory is to change the mindset of nature, namely the search for symmetry principles that underlie physical laws. Considering that symmetry is the invariance of an object or system from a transformation and that physical laws are the same at any point in space, the space of our universe has a continuous translational symmetry. In the space occupation of the first proposals by Corrales and Molezún underlying structures appear that match enlosetados: parallelograms under continuous transformations, which nature identifies tridimensionally with the crystallographic groups. Plants in the Contemporary Art Museum in La Castellana, the residence in Miraflores, the Brussels pavilion or the Peugeot tower belong to this group. The architecture as a process of continuous occupation of the territory and of its transposition to the deck, embodied in structural lines coincide with the mathematical structure of the translational symmetry and infinite extension whose possibility is enhanced by the use of the transparent cover. Alongside this literal transparency inherent to the material, Colin Rowe and Robert Slutzky alert us another transparency inherent in the structure: phenomenal transparency, illustrated by the Juan Gris’ works, and whose intuition is reflected in the Huarte’s house in Puerta de Hierro in Madrid. Corrales and Molezún insist on a reading of its volume away from the frontal, in which the outline of their inclined roofs and tangential visual suggested by the organization of his circulations introduce a diagonal structure which overlaps the orthogonal understanding of its plant, drawing an intricate web of broken lines that allow the space fluctuate between the volumetric sequence proposal. Information concerning to the energy mean of light and the concept of atom start from the consideration by Plank about the energy emission, and conclude with a paradoxical situation: the dual nature of light - demonstrated by the explanation of Einstein's photoelectric effect-, and the dual nature of matter -assumed by Bohr and demonstrated by the Compton effect-. Finally, Schrödinger and Heisenberg will formulate the universal movement equation governing in undulatory matter, whose mathematical representation is what is known as a wave function. The object is thus identified with its wave function. Its undulatory expression speaks about the probability of being found in a certain place. Gyorgy Kepes emphasizess the need to simplify the language to move from the objectivity that still remains in the cubist painting to the total abstraction of the space. And this is how artists reduced the objects to simple geometric shapes, making emerge at a time, the plastic forces that tense or balance them, in a process that eventually eliminate any trace of matter. Robert Rosenblum in Modern Painting and the Northern Romantic Tradition. Friedrich to Rothko talks about how this rejection of matter in an almost impalpable vacuum: dense color light fields that broadcast a serene glow and seem to generate the elemental energies of natural light is directly linked to the relationship with nature that sets the northern romanticism. An expression of the power of nature concentrated in a vacuum which had been reason for thought by Michael Faraday in his application of the concept of electric field. Saenz de Oíza touches upon the material expression of the energy in its proposal with Jose Luis Romany to the chapel on the Camino de Santiago. The presence of electromagnetic forces, the only ones with the gravitational one capable of being experienced by the man will also visualize in the emerging nature of some of his works: the sanctuary of Aránzazu or Torres Blancas, but also in the flowing nature of its contours, and the inclusion of interest in the realization of space fluctuating boundary: the threshold as the center of the universe. Miguel Fisac, back from his trip to the Northern Countries, starts on a linguistic simplification oriented to the functional adequacy of spaces. In the Daimiel Institute, in the Institute to Teacher Formation or in the complex to the Dominican Fathers in Valladolid or Alcobendas, progressively organized into different functional volumes architecture, focusing in a parallel way in the manifestation of the links established between these volumes as a visualization of the forces that tense and balance them. The prolongation of the physical reality beyond the limits of the envelope is already something more than a simple intuition. A process in which the treatment of light as a construction material, have a special role. In the Coronation church, curved wall lighting dramatizes the undulatory condition of the light, manifesting as if an interference pattern is involved. Versus the dissolution of the material, the space is expressed here as a dense atmosphere, away from the traditional notion of the vacuum. A dual nature, wave and particle, which is also sensed by Fisac in his committed use of concrete as a unique construction material. Richard Feynman alerts us to the occupation of space by many electromagnetic forces, which like the light, require specific receptors to capture their presence. His famous diagrams also involve the final visualization of atomic processes. As absolute abstraction in the visual arts, these representations are not assimilated to images obtained from our experience. A diagrammatic nature, abstracted from figuration, which will obtein the pictures of Alejandro de la Sota. The section of Maravillas gym collects traces of its main building blocks: structure, enclosures... but also, and with the same intensity, of the forces that generate their space as constituent elements. Sota makes it clear: the vacuum is where inhabit these tensions. The subsequent simplification of forms, accompanied by the obsession with his lightening, the near disappearance of the envelope, touches upon that idea which Paul Klee defines the activity of the artist in his Modern Art Theory, the spacing out to the apparent: it is not to reproduce the visible, it is to turn visible. Thus, in Bankunión and Aviaco, as in many other projects, against the shape, raises the limit as the dimension of a scope. His own aseptic and diagrammatic representation transmits waiver to a spatial specificity that Gilles Deleuze clearly expressed in Painting. The Concept Diagram: The diagram as the possibility of infinite pictures, or infinite possibility of the picture. Thus appears the probabilistic concept of space in which, opposite to the diffuse of its definition -clear ideas, diffuse definition, as Llinas said- the insistent attention to some elements like stairs, guards or lookouts seems to concentrate the architecture in its dynamic condition, transitional. The relationship opposite the object, the link opposite the tangible.