6 resultados para Cholorophyll-protein complex

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) G?-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of G?-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La resistencia de las plantas a los hongos necrótrofos como Plectosphaerella cucumerina es genéticamente compleja y depende de la activación coordinada de distintas rutas de señalización (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Entre éstas se encuentran las mediadas por la proteína G heterotrimérica, un complejo formado por tres subunidades (Gα, Gβ y Gγ) que regula tanto la respuesta de inmunidad a diferentes patógenos como distintos procesos de desarrollo (Temple and Jones, 2007). En esta Tesis hemos demostrado que, en Arabidopsis, el monómero funcional formado por las subunidades Gβ y Gγ1/Gγ2 es el responsable de la regulación de la respuesta de defensa, ya que mutantes nulos en estas subunidades (agb1 y agg1 agg2) presentan una alta susceptibilidad al hongo P. cucumerina. Además, hemos identificado varios aminoácidos (Q102, T188 y R235) de la proteína AGB1 esenciales en la interacción con los efectores correspondientes para la regulación de la respuesta inmune (Jiang et al, enviado). Para determinar las bases moleculares de la resistencia mediada por la proteína G heterotrimérica, llevamos a cabo un análisis transcriptómico comparativo entre los genotipos agb1 y Col-0, el cual reveló que la resistencia mediada por AGB1 no depende de rutas defensivas implicadas en la resistencia a hongos necrotrofos, como las mediadas por el ácido salicílico (SA), etileno (ET), jasmónico (JA) o ácido abscísico (ABA), o la ruta de biosíntesis de metabolitos derivados del triptófano. Este estudio mostró que un número significativo de los genes desregulados en respuesta a P. cucumerina en el genotipo agb1 respecto a las plantas silvestres codificaban proteínas con funciones relacionadas con la pared celular. La evaluación de la composición y estructura de la pared de los mutantes de las subunidades de la proteína G heterotrimérica reveló que los genotipos agb1 y agg1 agg2 presentaban alteraciones similares diferentes de las observadas en plantas silvestres Col-0, como una reducción significativa en el contenido de xilosa en la pared. Estos datos sugieren que la proteína G heterotrimérica puede modular la composición/estructura de la pared celular y contribuir, de esta manera, en la regulación de la respuesta inmune (Delgado- Cerezo et al, 2011). La caracterización del interactoma de la proteína G heterotrimérica corroboró la relevancia funcional que presenta en la regulación de la pared celular, ya que un número significativo de las interacciones identificadas estaban comprendidas por proteínas relacionadas directa o indirectamente con la biogénesis y remodelación de la pared celular (Klopffleisch et al, 2011). El papel en inmunidad de algunos de estos potenciales efectores ha sido validado mediante el análisis de la resistencia a P. cucumerina de los mutantes de pérdida de función correspondientes. Con el objetivo de caracterizar las rutas de señalización mediadas por AGB1 e identificar efectores implicados en esta señalización, llevamos a cabo una búsqueda de mutantes supresores de la susceptibilidad de agb1 a P. cucumerina, identificándose varios mutantes sgb (supressor of Gbeta). En esta Tesis hemos caracterizado en detalle el mutante sgb10, que presenta una activación constitutiva de las rutas de señalización mediadas por SA y JA+ET y suprime el fenotipo de susceptibilidad de agb1. SGB10 y AGB1 forman parte de rutas independientes en la regulación de la respuesta inmune, mientras que interaccionan de forma compleja en el control de determinados procesos de desarrollo. La mutación sgb10 ha sido cartografiada entre los genes At3g55010 y At3g56408, que incluye una región con 160 genes. ABSTRACT Plant resistance to necrotrophic fungi Plectosphaerella cucumerina is genetically complex and depends on the interplay of different signalling pathways (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Among others, the heterotrimeric G protein complex has a relevant role. The G protein that is formed by three subunits (Gα, Gβ and Gγ) is a pleiotropic regulator of immune responses to different types of pathogens and developmental issues (Temple and Jones, 2007). Throughout the Thesis, we have demonstrated that Arabidopsis’ functional monomer formed by the Gβ and Gγ1/Gγ2 subunits is a key regulator of defense response, as null mutants (agb1 and agg1 agg2) are equally hypersusceptible to P. cucumerina infection. In addition we have identified several AGB1 aminoacids (Q102, T188 y R235) essentials to interact with specific effectors during the regulation of immune response (Jiang et al, sent).To determine the molecular basis of heterotrimeric G protein mediated resistance we have performed a microarray analysis with agb1-1 and wild type Col-0 plants before and after P. cucumerina challenge. A deep and exhaustive comparative transcriptomical analysis of these plants revealed that AGB1 mediated resistance does not rely on salicilic acid (SA), ethylene (ET), jasmonates (JA), abscisic acid (ABA) or triptophan derived metabolites biosynthesis. However the analysis revealed that a significant number of cell wall related genes are misregulated in the agb1 mutant after pathogen challenge when compared to wild-type plants. The analysis of cell wall composition and structure showed similar cell wall alterations between agb1 and agg1 agg2 mutants that are different from those of wild-type plants, so far the mutants present a significant reduction in xylose levels. All these results suggest that heterotrimeric G protein may regulate immune response through modifications in the cell wall composition/structure (Delgado-Cerezo et al, 2011). The characterization of Heterotrimeric G protein interactome revealed highly connected interactions between the G-protein core and proteins involved in cell wall composition or structure (Klopffleisch et al, 2011). To test the role in immunity of several effectors identified above, we have performed resistance analysis of corresponding null mutants against P. cucumerina. In order to characterize AGB1 mediated signalling pathway and identify additional effectors involved in AGB1-mediated immune response against P. cucumerina, we have performed a screening to isolate mutants with suppression of agb1 phenotype. One of the mutants, named sgb10, has been characterized during the Thesis. The mutant shows constitutive expression of SA, JA+ET-mediated defense signaling pathways to suppres agb1 hypersusceptibility. SGB10 and AGB1 proteins seem to be part of independent pathways in immunity, however its function during development remains unclear. At present, we have mapped the sgb10 mutation between At3g55010 and At3g56408 genes. This region contains 160 genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un porcentaje importante de las pérdidas de la producción agrícola se deben a las enfermedades que causan en los cultivos los hongos necrótrofos y vasculares. Para mejorar la productividad agrícola es necesario tener un conocimiento detallado de las bases genéticas y moleculares que regulan la resistencia de las plantas a este tipo de patógenos. En Arabidopsis thaliana la resistencia frente a patógenos necrótrofos, como el hongo Plectosphaerella cucumerina BMM (PcBMM), es genéticamente compleja y depende de la activación coordinada de distintas rutas de señalización, como las reguladas por las hormonas ácido salicílico (SA), ácido jasmónico (JA), etileno (ET) y ácido abscísico (ABA), así como de la síntesis de compuestos antimicrobianos derivados del Triptófano y de la integridad de la pared celular (Llorente et al., 2005, Hernández-Blanco et al., 2007; Delgado-Cerezo et al., 2012). Uno de los componentes claves en la regulación de la resistencia de las plantas a patógenos (incluidos hongos necrótrofos y biótrofos) es la proteína G heterotrimérica, un complejo proteico formado por tres subunidades (Gα, Gβ y Gγ), que también regula distintos procesos del desarrollo vegetal. En Arabidopsis hay un gen que codifica para la subunidad α (GPA1), otro para la β (AGB1), y tres genes para la subunidad γ (AGG1, AGG2 y AGG3). El complejo GPA1-AGB1-AGG (1-3) se activa y disocia tras la percepción de una señal específica, actuando el dímero AGB1-AGG1/2 como un monómero funcional que regula las respuestas de defensa (Delgado-Cerezo et al., 2012). Estudios transcriptómicos y análisis bioquímicos de la pared celular en los que se comparaban los mutantes agb1-2 y agg1 agg2, y plantas silvestres (Col-0) revelaron que la resistencia mediada por Gβ-Gγ1/2 no es dependiente de rutas de defensa previamente caracterizadas, y sugieren que la proteína G podría modular la composición/estructura (integridad) de la pared celular (Delgado-Cerezo et al., 2012). Recientemente, se ha demostrado que AGB1 es un componente fundamental de la respuesta inmune mediada por Pathogen- Associated Molecular Patterns (PTI), ya que los mutantes agb1-2 son incapaces de activar tras el tratamiento con PAMPs respuestas de inmunidad, como la producción de especies reactivas de oxígeno (ROS; Liu et al., 2013). Dada la importancia de la proteína G heterotrimérica en la regulación de la respuestas de defensa (incluida la PTI) realizamos un escrutinio de mutantes supresores de la susceptibilidad de agb1-2 al hongo necrótrofo, PcBMM, para identificar componentes adicionales de las rutas de señalización reguladas por AGB1. En este escrutinio se aislaron cuatro mutantes sgb (suppressors of agb1-2 susceptibility to pathogens), dos de los cuales, sgb10 y sgb11, se han caracterizado en la presente Tesis Doctoral. El mutante sgb10 es un segundo alelo nulo del gen MKP1 (At3g55270) que codifica la MAP quinasa-fosfatasa 1 (Bartels et al., 2009). Este mutante presenta lesiones espontáneas en plantas adultas y una activación constitutiva de las principales rutas de defensa (SA, JA y ET, y de metabolitos secundarios, como la camalexina), que explicaría su elevada resistencia a PcBMM y Pseudomonas syringae. Estudios epistáticos sugieren que la resistencia mediada por SGB10 no es dependiente, si no complementaria a la regulada por AGB1. El mutante sgb10 es capaz de restablecer en agb1-2 la producción de ROS y otras respuestas PTI (fosforilación de las MAPK6/3/4/11) tras el tratamiento con PAMPs tan diversos como flg22, elf18 y quitina, lo que demuestra el papel relevante de SGB10/MKP1 y de AGB1 en PTI. El mutante sgb11 se caracteriza por presentar un fenotipo similar a los mutantes irregular xylem (e.g. irx1) afectado en pared celular secundaria: irregularidades en las células xilemáticas, reducción en el tamaño de la roseta y altura de planta, y hojas con un mayor contenido de clorofila. La resistencia de sgb11 a PcBMM es independiente de agb1-2, ya que la susceptibilidad del doble mutante sgb11 agb1-2 es intermedia entre la de agb1-2 y sgb11. El mutante sgb11 no revierte la deficiente PTI de agb1-2 tras el tratamiento con flg22, lo que indica que está alterado en una ruta distinta de la regulada por SGB10. sgb11 presenta una sobreactivación de la ruta del ácido abscísico (ABA), lo que podría explicar su resistencia a PcBMM. La mutación sgb11 ha sido cartografiada en el cromosoma III de Arabidopsis entre los marcadores AthFUS6 (81,64cM) y nga6 (86,41cM) en un intervalo de aproximadamente 200 kb, que comprende genes, entre los que no se encuentra ninguno previamente descrito como IRX. El aislamiento y caracterización de SGB11 apoya la relevancia de la proteína G heterotrimérica en la regulación de la interconexión entre integridad de la pared celular e inmunidad. ABSTRACT A significant percentage of agricultural losses are due to diseases caused by necrotrophic and vascular fungi. To enhance crop yields is necessary to have a detailed knowledge of the genetic and molecular bases regulating plant resistance to these pathogens. Arabidopsis thaliana resistance to necrotrophic pathogens, such as Plectosphaerella cucumerina BMM (PcBMM) fungus, is genetically complex and depends on the coordinated activation of various signaling pathways. These include those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) hormones and the synthesis of tryptophan-derived antimicrobial compounds and cell wall integrity (Llorente et al., 2005, Hernández-Blanco et al., 2007; Delgado-Cerezo et al., 2012). One key component in the regulation of plant resistance to pathogens (including biotrophic and necrotrophic fungi) is the heterotrimeric G-protein. This protein complex is formed by three subunits (Gα, Gβ and Gγ), which also regulates various plant developmental processes. In Arabidopsis only one gene encodes for subunits α (GPA1) and β (AGB1), and three genes for subunit γ (AGG1, AGG2 y AGG3). The complex GPA1- AGB1-AGG(1-3) is activated and dissociates after perception of an specific signal, AGB1- AGG1/2 acts as a functional monomer regulating defense responses (Delgado-Cerezo et al., 2012). Comparative transcriptomic studies and biochemical analyses of the cell wall of agb1-2 and agg1agg2 mutant and wild plants (Col-0), showed that Gβ-Gγ1/2-mediated resistance is not dependent on previously characterized defense pathways. In addition, it suggests that G protein may modulate the composition/structure (integrity) of the plant cell wall (Delgado-Cerezo et al., 2012). Recently, it has been shown that AGB1 is a critical component of the immune response mediated by Pathogen-Associated Molecular Patterns (PTI), as agb1-2 mutants are unable to activate immune responses such as oxygen reactive species (ROS) production after PAMPs treatment (Liu et al., 2013). Considering the importance of the heterotrimeric G protein in regulation of defense responses (including PTI), we performed a screening for suppressors of agb1-2 susceptibility to the necrotrophic fungus PcBMM. This would allow the identification of additional components of the signaling pathways regulated by AGB1. In this search four sgb mutants (suppressors of agb1-2 susceptibility to pathogens) were isolated, two of which, sgb10 and sgb11, have been characterized in this PhD thesis. sgb10 mutant is a second null allele of MKP1 gene (At3g55270), which encodes the MAP kinase-phosphatase 1 (Bartels et al., 2009). This mutant exhibits spontaneous lesions in adult plants and a constitutive activation of the main defense pathways (SA, JA and ET, and secondary metabolites, such as camalexin), which explains its high resistance to Pseudomonas syringae and PcBMM. Epistatic studies suggest that SGB10- mediated resistance is not dependent, but complementary to the regulated by AGB1. The sgb10 mutant is able to restore agb1-2 ROS production and other PTI responses (MAPK6/3/4/11 phosphorylation) upon treatment with PAMPs as diverse as, flg22, elf18 and chitin, demonstrating the relevant role of SGB10/MKP1 and AGB1 in PTI. sgb11 mutant is characterized by showing a similar phenotype to irregular xylem mutants (e.g. irx1), affected in secondary cell wall: irregular xylems cells, rosette size reduction and plant height, and higher chlorophyll content on leaves. The resistance of sgb11 to PcBMM is independent of agb1-2, as susceptibility of the double mutant agb1-2sgb11 is intermediate between agb1-2 and sgb11. The sgb11 mutant does not revert the deficient PTI response in agb1-2 after flg22 treatment, indicating that is altered in a pathway different to the one regulated by SGB10. sgb11 presents an over-activation of the abscisic acid pathway (ABA), which could explain its resistance to PcBMM. The sgb11 mutation has been mapped on chromosome III of Arabidopsis, between AthFUS6 (81.64 cM) and nga6 (86.41 cM) markers, in 200 kb interval, which does not include previously known IRX genes. The isolation and characterization of SGB11 supports the importance of heterotrimeric G protein in the regulation of the interconnection between the cell wall integrity and immunity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gluten is the main structural protein complex of wheat with equivalent toxic proteins found in other cereals (rye, barley, and oats) which are responsible for different immunologic responses with different clinical expressions of disease. The spectrum of gluten-related disorders has been classified according to pathogenic, clinical, and epidemiological differences in three main forms: (i) wheat allergy (WA), an IgE-mediated disease; (ii) autoimmune disease, including celiac disease (CD), dermatitis herpetiformis, and gluten ataxia; and (iii) possibly immune-mediated, gluten sensitivity [1]. WA is an immunologic Th2 response with typical manifestations which can vary from dermatological, respiratory, and/or intestinal to anaphylactic reactions. In contrast, CD is an autoimmune disorder, a gliadin-specific T-cell response which is enhanced by the action of intestinal tissue transglutaminase (tTG), with a wide clinical spectrum including symptomatic cases with either intestinal (e.g., chronic diarrhea, weight loss) or extraintestinal features (e.g., anemia, osteoporosis, neurologic disturbances) and silent forms that are occasionally discovered as a result of serological screening [1]. We studied wheat allergy in two children with early diagnosis of CD, who developed immediate allergic symptoms after eating small amounts of wheat flour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His 6 -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1 D299A non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the intricate maturation process of [NiFe]-hydrogenases, the Fe(CN)2CO cofactor is first assembled in a HypCD complex with iron coordinated by cysteines from both proteins and CO is added after ligation of cyanides. The small accessory protein HypC is known to play a role in delivering the cofactor needed for assembling the hydrogenase active site. However, the chemical nature of the Fe(CN)2CO moiety and the stability of the cofactor–HypC complex are open questions. In this work, we address geometries, properties, and the nature of bonding of all chemical species involved in formation and binding of the cofactor by means of quantum calculations. We also study the influence of environmental effects and binding to cysteines on vibrational frequencies of stretching modes of CO and CN used to detect the presence of Fe(CN)2CO. Carbon monoxide is found to be much more sensitive to sulfur binding and the polarity of the medium than cyanides. The stability of the HypC–cofactor complex is analyzed by means of molecular dynamics simulation of cofactor-free and cofactor-bound forms of HypC. The results show that HypC is stable enough to carry the cofactor, but since its binding cysteine is located at the N-terminal unstructured tail, it presents large motions in solution, which suggests the need for a guiding interaction to achieve delivery of the cofactor.