5 resultados para Chemistry, Physical and theorical
em Universidad Politécnica de Madrid
Resumo:
Following the success achieved in previous research projects usin non-destructive methods to estimate the physical and mechanical aging of particle and fibre boards, this paper studies the relationships between aging, physical and mechanical changes, using non-destructive measurements of oriented strand board (OSB). 184 pieces of OSB board from a French source were tested to analyze its actual physical and mechanical properties. The same properties were estimated using acoustic non-destructive methods (ultrasound and stress wave velocity) during a physical laboratory aging test. Measurements were recorded of propagation wave velocity with the sensors aligned, edge to edge, and forming an angle of 45 degrees, with both sensors on the same face of the board. This is because aligned measures are not possible on site. The velocity results are always higher in 45 degree measurements. Given the results of statistical analysis, it can be concluded that there is a strong relationship between acoustic measurements and the decline in physical and mechanical properties of the panels due to aging. The authors propose several models to estimate the physical and mechanical properties of board, as well as their degree of aging. The best results are obtained using ultrasound, although the difference in comparison with the stress wave method is not very significant. A reliable prediction of the degree of deterioration (aging) of board is presented.
Resumo:
Around ten years ago investigation of technical and material construction in Ancient Roma has advanced in favour to obtain positive results. This process has been directed to obtaining some dates based in chemical composition, also action and reaction of materials against meteorological assaults or post depositional displacements. Plenty of these dates should be interpreted as a result of deterioration and damage in concrete material made in one landscape with some kind of meteorological characteristics. Concrete mixture like calcium and gypsum mortars should be analysed in laboratory test programs, and not only with descriptions based in reference books of Strabo, Pliny the Elder or Vitruvius. Roman manufacture was determined by weather condition, landscape, natural resources and of course, economic situation of the owner. In any case we must research the work in every facts of construction. On the one hand, thanks to chemical techniques like X-ray diffraction and Optical microscopy, we could know the granular disposition of mixture. On the other hand if we develop physical and mechanical techniques like compressive strength, capillary absorption on contact or water behaviour, we could know the reactions in binder and aggregates against weather effects. However we must be capable of interpret these results. Last year many analyses developed in archaeological sites in Spain has contributed to obtain different point of view, so has provide new dates to manage one method to continue the investigation of roman mortars. If we developed chemical and physical analysis in roman mortars at the same time, and we are capable to interpret the construction and the resources used, we achieve to understand the process of construction, the date and also the way of restoration in future.
Resumo:
The ability to reproduce reduced gravity conditions for long periods is one of the reasons why the orbiting laboratory is so attractive. In this paper several fluid dynamics problem areas are reviewed in which zero-gravity conditions are of great importance. Although emphasis is placed on space processing, there are some older problems also in which gravity masks the phenomcna, impeding a reasonably simple approach to the solution. Three problems are considered: Thermal convection under reduced gravity. The dumping effect ofsurface gravity waves at the outset of convection induced by surface tractions is discussed in particular. The existence of convection is of concern for some satellite thermal control techniques presently used, and for most of the proposed manufacturing processes. Whereas convection should be normally avoided, problems related to the containerless stirring ofa melt constitute an exception. Secondly, gravity and chemical reactions. Although chemical reactions are independent of gravity because of the small mass of the molecules and atoms involved, in many cases the reaction rate dcpends on the arrival of the species to the reaction zone. When the arrival process is buoyancy-controlled, the net specd of the reaction will be affected by the gravity. Thirdly, two-phase flows under reduced gravity provkle interesting problems from boiling heat transfer to degasslng of melts. This part of the paper deals only with the measurement of sound veiocity in a liquid containing bubbles. It is suggested that such measurements should be mude under reduced gravity to provide reliable residís.
Resumo:
The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB) Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion can affect the electronic equipment, so it was decided to analyze, using both physical and numerical modeling, a small piece of the structure to determine the distribution of the accelerations and the relative importance of damping, stiffness, connections, etc. on the response of the equipment.
Resumo:
Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc). The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT) and total herbicide (HT) with two cover crops; annual cereal (CT) and annual grass (AGT), established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1) that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1) whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth). AGT presented bulk density values (upper 0.4 m) lower than TT and penetration resistance in CT lower (at 0.20 m depth) than TT too. Effects of soil management in vineyard on soil physical and chemical characteristics - ResearchGate. Available from: http://www.researchgate.net/publication/268520480_Effects_of_soil_management_in_vineyard_on_soil_physical_and_chemical_characteristics [accessed May 20, 2015].