2 resultados para Chemical waste

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, they have proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presently in use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials. In this study, several techniques, including X-ray diffraction (XRD), chemical analysis, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and bioassays, were used to compare the biocompatibility and cell growth of scaffolds produced from beer bagasse, a waste material from beer production, with a control sample used in bone and dental regenerative processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mine soils usually contain large levels of heavy metals and poor fertility conditions which limit their reclamation and the application of phyto-remediation technologies. Two organic waste materials (pine bark compost and sheep and horse manure compost), with different pHs and varying degrees of humification and nutrient contents, were applied as amendments to assess their effects on copper (Cu) and zinc (Zn) bioavailability and on fertility conditions of mine soils. Soil samples collected from two abandoned mining areas near Madrid (Spain) were mixed with 0, 30 and 60 t ha?1 of the organic amendments. The concentrations of metals among the different mineral and organic fractions of soil were determined by several extraction procedures to study the metal distribution in the solid phase of the soil affected by the organic amendments. The results showed that the manure amendment increased the soil pH and the cation exchange capacity and enhanced the nutrient levels of these soils. The pine bark amendment decreased the soil pH and did not significantly change the nutrient status of soil. Soil pH, organic matter content and its degree of humification, which were altered by the amendments, were the main factors affecting Cu fractionation. Zn fractionation was mainly affected by soil pH. The addition of manure not only improved soil fertility, but also decreased metal bioavailability resulting in a reduction of metal toxicity. Conversely, pine bark amendment increased metal ioavailability. The use of sheep and horse manure could be a cost-effective practice for the restoration of contaminated mine soils.