5 resultados para Chebyshev
em Universidad Politécnica de Madrid
Resumo:
Expresar la solución de una ecuación diferencial como una serie funcional es la base sobre la que se construyen la mayor parte de los métodos numéricos de resolución de ecuaciones diferenciales. En este primer capítulo se muestran dos de las aproximaciones más comunes y utilizadas: serie de potencias (Taylor) y trigonométricas. Entre estas últimas cabe destacar la serie de Fourier como la más conocida, pero existen otras muchas, en particular nos centraremos en la expansión de una función utilizando polinomios de Chebyshev
Resumo:
El proyecto, “Aplicaciones de filtrado adaptativo LMS para mejorar la respuesta de acelerómetros”, se realizó con el objetivo de eliminar señales no deseadas de la señal de información procedentes de los acelerómetros para aplicaciones automovilísticas, mediante los algoritmos de los filtros adaptativos LMS. Dicho proyecto, está comprendido en tres áreas para su realización y ejecución, los cuales fueron ejecutados desde el inicio hasta el último día de trabajo. En la primera área de aplicación, diseñamos filtros paso bajo, paso alto, paso banda y paso banda eliminada, en lo que son los filtros de butterworth, filtros Chebyshev, de tipo uno como de tipo dos y filtros elípticos. Con esta primera parte, lo que se quiere es conocer, o en nuestro caso, recordar el entorno de Matlab, en sus distintas ecuaciones prediseñadas que nos ofrece el mencionado entorno, como también nos permite conocer un poco las características de estos filtros. Para posteriormente probar dichos filtros en el DSP. En la segunda etapa, y tras recordar un poco el entorno de Matlab, nos centramos en la elaboración y/o diseño de nuestro filtro adaptativo LMS; experimentado primero con Matlab, para como ya se dijo, entender y comprender el comportamiento del mismo. Cuando ya teníamos claro esta parte, procedimos a “cargar” el código en el DSP, compilarlo y depurarlo, realizando estas últimas acciones gracias al Visual DSP. Resaltaremos que durante esta segunda etapa se empezó a excitar las entradas del sistema, con señales provenientes del Cool Edit Pro, y además para saber cómo se comportaba el filtro adaptativo LMS, se utilizó señales provenientes de un generador de funciones, para obtener de esta manera un desfase entre las dos señales de entrada; aunque también se utilizó el propio Cool Edit Pro para obtener señales desfasadas, pero debido que la fase tres no podíamos usar el mencionado software, realizamos pruebas con el generador de funciones. Finalmente, en la tercera etapa, y tras comprobar el funcionamiento deseado de nuestro filtro adaptativo DSP con señales de entrada simuladas, pasamos a un laboratorio, en donde se utilizó señales provenientes del acelerómetro 4000A, y por supuesto, del generador de funciones; el cual sirvió para la formación de nuestra señal de referencia, que permitirá la eliminación de una de las frecuencias que se emitirá del acelerómetro. Por último, cabe resaltar que pudimos obtener un comportamiento del filtro adaptativo LMS adecuado, y como se esperaba. Realizamos pruebas, con señales de entrada desfasadas, y obtuvimos curiosas respuestas a la salida del sistema, como son que la frecuencia a eliminar, mientras más desfasado estén estas señales, mas se notaba. Solucionando este punto al aumentar el orden del filtro. Finalmente podemos concluir que pese a que los filtros digitales probados en la primera etapa son útiles, para tener una respuesta lo más ideal posible hay que tener en cuenta el orden del filtro, el cual debe ser muy alto para que las frecuencias próximas a la frecuencia de corte, no se atenúen. En cambio, en los filtros adaptativos LMS, si queremos por ejemplo, eliminar una señal de entre tres señales, sólo basta con introducir la frecuencia a eliminar, por una de las entradas del filtro, en concreto la señal de referencia. De esta manera, podemos eliminar una señal de entre estas tres, de manera que las otras dos, no se vean afectadas por el procedimiento. Abstract The project, "LMS adaptive filtering applications to improve the response of accelerometers" was conducted in order to remove unwanted signals from the information signal from the accelerometers for automotive applications using algorithms LMS adaptive filters. The project is comprised of three areas for implementation and execution, which were executed from the beginning until the last day. In the first area of application, we design low pass filters, high pass, band pass and band-stop, as the filters are Butterworth, Chebyshev filters, type one and type two and elliptic filters. In this first part, what we want is to know, or in our case, remember the Matlab environment, art in its various equations offered by the mentioned environment, as well as allows us to understand some of the characteristics of these filters. To further test these filters in the DSP. In the second stage, and recalling some Matlab environment, we focus on the development and design of our LMS adaptive filter; experimented first with Matlab, for as noted above, understand the behavior of the same. When it was clear this part, proceeded to "load" the code in the DSP, compile and debug, making these latest actions by the Visual DSP. Will highlight that during this second stage began to excite the system inputs, with signals from the Cool Edit Pro, and also for how he behaved the LMS adaptive filter was used signals from a function generator, to thereby obtain a gap between the two input signals, but also used Cool Edit Pro himself for phase signals, but due to phase three could not use such software, we test the function generator. Finally, in the third stage, and after checking the desired performance of our DSP adaptive filter with simulated input signals, we went to a laboratory, where we used signals from the accelerometer 4000A, and of course, the function generator, which was used for the formation of our reference signal, enabling the elimination of one of the frequencies to be emitted from the accelerometer. Note that they were able to obtain a behavior of the LMS adaptive filter suitable as expected. We test with outdated input signals, and got curious response to the output of the system, such as the frequency to remove, the more outdated are these signs, but noticeable. Solving this point with increasing the filter order. We can conclude that although proven digital filters in the first stage are useful, to have a perfect answer as possible must be taken into account the order of the filter, which should be very high for frequencies near the frequency cutting, not weakened. In contrast, in the LMS adaptive filters if we for example, remove a signal from among three signals, only enough to eliminate the frequency input on one of the inputs of the filter, namely the reference signal. Thus, we can remove a signal between these three, so that the other two, not affected by the procedure.
Resumo:
En este proyecto se estudian y analizan las diferentes técnicas de procesado digital de señal aplicadas a acelerómetros. Se hace uso de una tarjeta de prototipado, basada en DSP, para realizar las diferentes pruebas. El proyecto se basa, principalmente, en realizar filtrado digital en señales provenientes de un acelerómetro en concreto, el 1201F, cuyo campo de aplicación es básicamente la automoción. Una vez estudiadas la teoría de procesado y las características de los filtros, diseñamos una aplicación basándonos sobre todo en el entorno en el que se desarrollaría una aplicación de este tipo. A lo largo del diseño, se explican las diferentes fases: diseño por ordenador (Matlab), diseño de los filtros en el DSP (C), pruebas sobre el DSP sin el acelerómetro, calibración del acelerómetro, pruebas finales sobre el acelerómetro... Las herramientas utilizadas son: la plataforma Kit de evaluación 21-161N de Analog Devices (equipado con el entorno de desarrollo Visual DSP 4.5++), el acelerómetro 1201F, el sistema de calibración de acelerómetros CS-18-LF de Spektra y los programas software MATLAB 7.5 y CoolEditPRO 2.0. Se realizan únicamente filtros IIR de 2º orden, de todos los tipos (Butterworth, Chebyshev I y II y Elípticos). Realizamos filtros de banda estrecha, paso-banda y banda eliminada, de varios tipos, dentro del fondo de escala que permite el acelerómetro. Una vez realizadas todas las pruebas, tanto simulaciones como físicas, se seleccionan los filtros que presentan un mejor funcionamiento y se analizan para obtener conclusiones. Como se dispone de un entorno adecuado para ello, se combinan los filtros entre sí de varias maneras, para obtener filtros de mayor orden (estructura paralelo). De esta forma, a partir de filtros paso-banda, podemos obtener otras configuraciones que nos darán mayor flexibilidad. El objetivo de este proyecto no se basa sólo en obtener buenos resultados en el filtrado, sino también de aprovechar las facilidades del entorno y las herramientas de las que disponemos para realizar el diseño más eficiente posible. In this project, we study and analize digital signal processing in order to design an accelerometer-based application. We use a hardware card of evaluation, based on DSP, to make different tests. This project is based in design digital filters for an automotion application. The accelerometer type is 1201F. First, we study digital processing theory and main parameters of real filters, to make a design based on the application environment. Along the application, we comment all the different steps: computer design (Matlab), filter design on the DSP (C language), simulation test on the DSP without the accelerometer, accelerometer calibration, final tests on the accelerometer... Hardware and software tools used are: Kit of Evaluation 21-161-N, based on DSP, of Analog Devices (equiped with software development tool Visual DSP 4.5++), 1201-F accelerometer, CS-18-LF calibration system of SPEKTRA and software tools MATLAB 7.5 and CoolEditPRO 2.0. We only perform 2nd orden IIR filters, all-type : Butterworth, Chebyshev I and II and Ellyptics. We perform bandpass and stopband filters, with very narrow band, taking advantage of the accelerometer's full scale. Once all the evidence, both simulations and physical, are finished, filters having better performance and analyzed and selected to draw conclusions. As there is a suitable environment for it, the filters are combined together in different ways to obtain higher order filters (parallel structure). Thus, from band-pass filters, we can obtain many configurations that will give us greater flexibility. The purpose of this project is not only based on good results in filtering, but also to exploit the facilities of the environment and the available tools to make the most efficient design possible.
Resumo:
A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.
Resumo:
En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.