2 resultados para Charge separation

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de esta tesis doctoral es la investigación del nuevo concepto de pinzas fotovoltaicas, es decir, del atrapamiento, ordenación y manipulación de partículas en las estructuras generadas en la superficie de materiales ferroeléctricos mediante campos fotovoltaicos o sus gradientes. Las pinzas fotovoltaicas son una herramienta prometedora para atrapar y mover las partículas en la superficie de un material fotovoltaico de una manera controlada. Para aprovechar esta nueva técnica es necesario conocer con precisión el campo eléctrico creado por una iluminación específica en la superficie del cristal y por encima de ella. Este objetivo se ha dividido en una serie de etapas que se describen a continuación. La primera etapa consistió en la modelización del campo fotovoltaico generado por iluminación no homogénea en substratos y guías de onda de acuerdo al modelo de un centro. En la segunda etapa se estudiaron los campos y fuerzas electroforéticas y dielectroforéticas que aparecen sobre la superficie de substratos iluminados inhomogéneamente. En la tercera etapa se estudiaron sus efectos sobre micropartículas y nanopartículas, en particular se estudió el atrapamiento superficial determinando las condiciones que permiten el aprovechamiento como pinzas fotovoltaicas. En la cuarta y última etapa se estudiaron las configuraciones más eficientes en cuanto a resolución espacial. Se trabajó con distintos patrones de iluminación inhomogénea, proponiéndose patrones de iluminación al equipo experimental. Para alcanzar estos objetivos se han desarrollado herramientas de cálculo con las cuales obtenemos temporalmente todas las magnitudes que intervienen en el problema. Con estas herramientas podemos abstraernos de los complicados mecanismos de atrapamiento y a partir de un patrón de luz obtener el atrapamiento. Todo el trabajo realizado se ha llevado a cabo en dos configuraciones del cristal, en corte X ( superficie de atrapamiento paralela al eje óptico) y corte Z ( superficie de atrapamiento perpendicular al eje óptico). Se ha profundizado en la interpretación de las diferencias en los resultados según la configuración del cristal. Todas las simulaciones y experimentos se han realizado utilizando como soporte un mismo material, el niobato de litio, LiNbO3, con el f n de facilitar la comparación de los resultados. Este hecho no ha supuesto una limitación en los resultados pues los modelos no se limitan a este material. Con respecto a la estructura del trabajo, este se divide en tres partes diferenciadas que son: la introducción (I), la modelización del atrapamiento electroforético y dielectroforético (II) y las simulaciones numéricas y comparación con experimentos (III). En la primera parte se fijan las bases sobre las que se sustentarán el resto de las partes. Se describen los efectos electromagnéticos y ópticos a los que se hará referencia en el resto de los capítulos, ya sea por ser necesarios para describir los experimentos o, en otros casos, para dejar constancia de la no aparición de estos efectos para el caso en que nos ocupa y justificar la simplificación que en muchos casos se hace del problema. En esta parte, se describe principalmente el atrapamiento electroforético y dielectroforético, el efecto fotovoltaico y las propiedades del niobato de litio por ser el material que utilizaremos en experimentos y simulaciones. Así mismo, como no debe faltar en ninguna investigación, se ha analizado el state of the art, revisando lo que otros científicos del campo en el que estamos trabajando han realizado y escrito con el fin de que nos sirva de cimiento a la investigación. Con el capítulo 3 finalizamos esta primera parte describiendo las técnicas experimentales que hoy en día se están utilizando en los laboratorios para realizar el atrapamiento de partículas mediante el efecto fotovoltaico, ya que obtendremos ligeras diferencias en los resultados según la técnica de atrapamiento que se utilice. En la parte I I , dedicada a la modelización del atrapamiento, empezaremos con el capítulo 4 donde modelizaremos el campo eléctrico interno de la muestra, para a continuación modelizar el campo eléctrico, los potenciales y las fuerzas externas a la muestra. En capítulo 5 presentaremos un modelo sencillo para comprender el problema que nos aborda, al que llamamos Modelo Estacionario de Separación de Carga. Este modelo da muy buenos resultados a pesar de su sencillez. Pasamos al capítulo 6 donde discretizaremos las ecuaciones que intervienen en la física interna de la muestra mediante el método de las diferencias finitas, desarrollando el Modelo de Distribución de Carga Espacial. Para terminar esta parte, en el capítulo 8 abordamos la programación de las modelizaciones presentadas en los anteriores capítulos con el fn de dotarnos de herramientas para realizar las simulaciones de una manera rápida. En la última parte, III, presentaremos los resultados de las simulaciones numéricas realizadas con las herramientas desarrolladas y comparemos sus resultados con los experimentales. Fácilmente podremos comparar los resultados en las dos configuraciones del cristal, en corte X y corte Z. Finalizaremos con un último capítulo dedicado a las conclusiones, donde resumiremos los resultados que se han ido obteniendo en cada apartado desarrollado y daremos una visión conjunta de la investigación realizada. ABSTRACT The aim of this thesis is the research of the new concept of photovoltaic or optoelectronic tweezers, i.e., trapping, management and manipulation of particles in structures generated by photovoltaic felds or gradients on the surface of ferroelectric materials. Photovoltaic tweezers are a promising tool to trap and move the particles on the surface of a photovoltaic material in a monitored way. To take advantage of this new technique is necessary to know accurately the electric field created by a specifc illumination in the crystal surface and above it. For this purpose, the work was divided into the stages described below. The first stage consisted of modeling the photovoltaic field generated by inhomogeneous illumination in substrates and waveguides according to the one-center model. In the second stage, electrophoretic and dielectrophoretic fields and forces appearing on the surface of substrates and waveguides illuminated inhomogeneously were studied. In the third stage, the study of its effects on microparticles and nanoparticles took place. In particular, the trapping surface was studied identifying the conditions that allow its use as photovoltaic tweezers. In the fourth and fnal stage the most efficient configurations in terms of spatial resolution were studied. Different patterns of inhomogeneous illumination were tested, proposing lightning patterns to the laboratory team. To achieve these objectives calculation tools were developed to get all magnitudes temporarily involved in the problem . With these tools, the complex mechanisms of trapping can be simplified, obtaining the trapping pattern from a light pattern. All research was carried out in two configurations of crystal; in X section (trapping surface parallel to the optical axis) and Z section (trapping surface perpendicular to the optical axis). The differences in the results depending on the configuration of the crystal were deeply studied. All simulations and experiments were made using the same material as support, lithium niobate, LiNbO3, to facilitate the comparison of results. This fact does not mean a limitation in the results since the models are not limited to this material. Regarding the structure of this work, it is divided into three clearly differentiated sections, namely: Introduction (I), Electrophoretic and Dielectrophoretic Capture Modeling (II) and Numerical Simulations and Comparison Experiments (III). The frst section sets the foundations on which the rest of the sections will be based on. Electromagnetic and optical effects that will be referred in the remaining chapters are described, either as being necessary to explain experiments or, in other cases, to note the non-appearance of these effects for the present case and justify the simplification of the problem that is made in many cases. This section mainly describes the electrophoretic and dielectrophoretic trapping, the photovoltaic effect and the properties of lithium niobate as the material to use in experiments and simulations. Likewise, as required in this kind of researches, the state of the art have been analyzed, reviewing what other scientists working in this field have made and written so that serve as a foundation for research. With chapter 3 the first section finalizes describing the experimental techniques that are currently being used in laboratories for trapping particles by the photovoltaic effect, because according to the trapping technique in use we will get slightly different results. The section I I , which is dedicated to the trapping modeling, begins with Chapter 4 where the internal electric field of the sample is modeled, to continue modeling the electric field, potential and forces that are external to the sample. Chapter 5 presents a simple model to understand the problem addressed by us, which is called Steady-State Charge Separation Model. This model gives very good results despite its simplicity. In chapter 6 the equations involved in the internal physics of the sample are discretized by the finite difference method, which is developed in the Spatial Charge Distribution Model. To end this section, chapter 8 is dedicated to program the models presented in the previous chapters in order to provide us with tools to perform simulations in a fast way. In the last section, III, the results of numerical simulations with the developed tools are presented and compared with the experimental results. We can easily compare outcomes in the two configurations of the crystal, in section X and section Z. The final chapter collects the conclusions, summarizing the results that were obtained in previous sections and giving an overview of the research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.