2 resultados para Characteristic equation
em Universidad Politécnica de Madrid
Resumo:
Various researchers have developed models of conventional H2O–LiBr absorption machines with the aim of predicting their performance. In this paper, the methodology of characteristic equations developed by Hellmann et al. (1998) is applied. This model is able to represent the capacity of single effect absorption chillers and heat pumps by means of simple algebraic equations. An extended characteristic equation based on a characteristic temperature difference has been obtained, considering the facility features. As a result, it is concluded that for adiabatic absorbers a subcooling temperature must be specified. The effect of evaporator overflow has been characterized. Its influence on cooling capacity has been included in the extended characteristic equation. Taking into account the particular design and operation features, a good agreement between experimental performance data and those obtained through the extended characteristic equation has been achieved at off-design operation. This allows its use for simulation and control purposes.
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data