3 resultados para Causal attributions

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las arquitecturas jerárquicas de comunicación causal se presentan como una alternativa habitual para reducir el elevado tamaño de la información de control causal a enviar en cada mensaje, cuando la comunicación se realiza entre un subconjunto de procesos que pertenecen a un grupo muy numeroso. Sin embargo, en estas arquitecturas, los nodos intermedios de la jerarquía padecen un efecto indeseable denominado efecto convoy. Estos nodos intermedios tienden a generar ráfagas de envíos que sobrecargan tanto a los nodos de los niveles inferiores de la jerarquía como a la red, provocando pérdidas de mensajes y periodos entre ráfagas de infrautilización de la red. Este artículo presenta un servicio causal bidireccional sin contención que, aplicado a los nodos intermedios de la jerarquía, soluciona el efecto convoy. Este servicio causal sin contención entrega a la capa de aplicación y envía al sistema un mensaje sin esperar la entrega o el envío previo de mensajes que constituyen la historia causal del primero, por lo que evita las ráfagas de entrega y de envío de mensajes. La entrega de un mensaje va acompañada de un identificador causal, que es un número natural que indica el número de orden de ese mensaje en la secuencia causal total. El envío de un mensaje supone construir un vector causal válido a partir de un identiificador causal, que permita ordenar dicho mensaje en orden causal en el proceso receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.