17 resultados para Cauchy singular integral-equation
em Universidad Politécnica de Madrid
Resumo:
Dynamic soil-structure interaction has been for a long time one of the most fascinating areas for the engineering profession. The building of large alternating machines and their effects on surrounding structures as well as on their own functional behavior, provided the initial impetus; a large amount of experimental research was done,and the results of the Russian and German groups were especially worthwhile. Analytical results by Reissner and Sehkter were reexamined by Quinlan, Sung, et. al., and finally Veletsos presented the first set of reliable results. Since then, the modeling of the homogeneous, elastic halfspace as a equivalent set of springs and dashpots has become an everyday tool in soil engineering practice, especially after the appearance of the fast Fourier transportation algorithm, which makes possible the treatment of the frequency-dependent characteristics of the equivalent elements in a unified fashion with the general method of analysis of the structure. Extensions to the viscoelastic case, as well as to embedded foundations and complicated geometries, have been presented by various authors. In general, they used the finite element method with the well known problems of geometric truncations and the subsequent use of absorbing boundaries. The properties of boundary integral equation methods are, in our opinion, specially well suited to this problem, and several of the previous results have confirmed our opinion. In what follows we present the general features related to steady-state elastodynamics and a series of results showing the splendid results that the BIEM provided. Especially interesting are the outputs obtained through the use of the so-called singular elements, whose description is incorporated at the end of the paper. The reduction in time spent by the computer and the small number of elements needed to simulate realistically the global properties of the halfspace make this procedure one of the most interesting applications of the BIEM.
Resumo:
El diseño de una antena reflectarray bajo la aproximación de periodicidad local requiere la determinación de la matriz de scattering de estructuras multicapa con metalizaciones periódicas para un gran número de geometrías diferentes. Por lo tanto, a la hora de diseñar antenas reflectarray en tiempos de CPU razonables, se necesitan herramientas númericas rápidas y precisas para el análisis de las estructuras periódicas multicapa. En esta tesis se aplica la versión Galerkin del Método de los Momentos (MDM) en el dominio espectral al análisis de las estructuras periódicas multicapa necesarias para el diseño de antenas reflectarray basadas en parches apilados o en dipolos paralelos coplanares. Desgraciadamente, la aplicación de este método numérico involucra el cálculo de series dobles infinitas, y mientras que algunas series convergen muy rápidamente, otras lo hacen muy lentamente. Para aliviar este problema, en esta tesis se propone un novedoso MDM espectral-espacial para el análisis de las estructuras periódicas multicapa, en el cual las series rápidamente convergente se calculan en el dominio espectral, y las series lentamente convergentes se calculan en el dominio espacial mediante una versión mejorada de la formulación de ecuaciones integrales de potenciales mixtos (EIPM) del MDM. Esta versión mejorada se basa en la interpolación eficiente de las funciones de Green multicapa periódicas, y en el cálculo eficiente de las integrales singulares que conducen a los elementos de la matriz del MDM. El novedoso método híbrido espectral-espacial y el tradicional MDM en el dominio espectral se han comparado en el caso de los elementos reflectarray basado en parches apilados. Las simulaciones numéricas han demostrado que el tiempo de CPU requerido por el MDM híbrido es alrededor de unas 60 veces más rápido que el requerido por el tradicional MDM en el dominio espectral para una precisión de dos cifras significativas. El uso combinado de elementos reflectarray con parches apilados y técnicas de optimización de banda ancha ha hecho posible diseñar antenas reflectarray de transmisiónrecepción (Tx-Rx) y polarización dual para aplicaciones de espacio con requisitos muy restrictivos. Desgraciadamente, el nivel de aislamiento entre las polarizaciones ortogonales en antenas DBS (típicamente 30 dB) es demasiado exigente para ser conseguido con las antenas basadas en parches apilados. Además, el uso de elementos reflectarray con parches apilados conlleva procesos de fabricación complejos y costosos. En esta tesis se investigan varias configuraciones de elementos reflectarray basadas en conjuntos de dipolos paralelos con el fin de superar los inconvenientes que presenta el elemento basado en parches apilados. Primeramente, se propone un elemento consistente en dos conjuntos apilados ortogonales de tres dipolos paralelos para aplicaciones de polarización dual. Se ha diseñado, fabricado y medido una antena basada en este elemento, y los resultados obtenidos para la antena indican que tiene unas altas prestaciones en términos de ancho de banda, pérdidas, eficiencia y discriminación contrapolar, además de requerir un proceso de fabricación mucho más sencillo que el de las antenas basadas en tres parches apilados. Desgraciadamente, el elemento basado en dos conjuntos ortogonales de tres dipolos paralelos no proporciona suficientes grados de libertad para diseñar antenas reflectarray de transmisión-recepción (Tx-Rx) de polarización dual para aplicaciones de espacio por medio de técnicas de optimización de banda ancha. Por este motivo, en la tesis se propone un nuevo elemento reflectarray que proporciona los grados de libertad suficientes para cada polarización. El nuevo elemento consiste en dos conjuntos ortogonales de cuatro dipolos paralelos. Cada conjunto contiene tres dipolos coplanares y un dipolo apilado. Para poder acomodar los dos conjuntos de dipolos en una sola celda de la antena reflectarray, el conjunto de dipolos de una polarización está desplazado medio período con respecto al conjunto de dipolos de la otra polarización. Este hecho permite usar solamente dos niveles de metalización para cada elemento de la antena, lo cual simplifica el proceso de fabricación como en el caso del elemento basados en dos conjuntos de tres dipolos paralelos coplanares. Una antena de doble polarización y doble banda (Tx-Rx) basada en el nuevo elemento ha sido diseñada, fabricada y medida. La antena muestra muy buenas presentaciones en las dos bandas de frecuencia con muy bajos niveles de polarización cruzada. Simulaciones numéricas presentadas en la tesis muestran que estos bajos de niveles de polarización cruzada se pueden reducir todavía más si se llevan a cabo pequeñas rotaciones de los dos conjuntos de dipolos asociados a cada polarización. ABSTRACT The design of a reflectarray antenna under the local periodicity assumption requires the determination of the scattering matrix of a multilayered structure with periodic metallizations for quite a large number of different geometries. Therefore, in order to design reflectarray antennas within reasonable CPU times, fast and accurate numerical tools for the analysis of the periodic multilayered structures are required. In this thesis the Galerkin’s version of the Method of Moments (MoM) in the spectral domain is applied to the analysis of the periodic multilayered structures involved in the design of reflectarray antennas made of either stacked patches or coplanar parallel dipoles. Unfortunately, this numerical approach involves the computation of double infinite summations, and whereas some of these summations converge very fast, some others converge very slowly. In order to alleviate this problem, in the thesis a novel hybrid MoM spectral-spatial domain approach is proposed for the analysis of the periodic multilayered structures. In the novel approach, whereas the fast convergent summations are computed in the spectral domain, the slowly convergent summations are computed by means of an enhanced Mixed Potential Integral Equation (MPIE) formulation of the MoM in the spatial domain. This enhanced formulation is based on the efficient interpolation of the multilayered periodic Green’s functions, and on the efficient computation of the singular integrals leading to the MoM matrix entries. The novel hybrid spectral-spatial MoM code and the standard spectral domain MoM code have both been compared in the case of reflectarray elements based on multilayered stacked patches. Numerical simulations have shown that the CPU time required by the hybrid MoM is around 60 times smaller than that required by the standard spectral MoM for an accuracy of two significant figures. The combined use of reflectarray elements based on stacked patches and wideband optimization techniques has made it possible to design dual polarization transmit-receive (Tx-Rx) reflectarrays for space applications with stringent requirements. Unfortunately, the required level of isolation between orthogonal polarizations in DBS antennas (typically 30 dB) is hard to achieve with the configuration of stacked patches. Moreover, the use of reflectarrays based on stacked patches leads to a complex and expensive manufacturing process. In this thesis, we investigate several configurations of reflectarray elements based on sets of parallel dipoles that try to overcome the drawbacks introduced by the element based on stacked patches. First, an element based on two stacked orthogonal sets of three coplanar parallel dipoles is proposed for dual polarization applications. An antenna made of this element has been designed, manufactured and measured, and the results obtained show that the antenna presents a high performance in terms of bandwidth, losses, efficiency and cross-polarization discrimination, while the manufacturing process is cheaper and simpler than that of the antennas made of stacked patches. Unfortunately, the element based on two sets of three coplanar parallel dipoles does not provide enough degrees of freedom to design dual-polarization transmit-receive (Tx-Rx) reflectarray antennas for space applications by means of wideband optimization techniques. For this reason, in the thesis a new reflectarray element is proposed which does provide enough degrees of freedom for each polarization. This new element consists of two orthogonal sets of four parallel dipoles, each set containing three coplanar dipoles and one stacked dipole. In order to accommodate the two sets of dipoles in each reflectarray cell, the set of dipoles for one polarization is shifted half a period from the set of dipoles for the other polarization. This also makes it possible to use only two levels of metallization for the reflectarray element, which simplifies the manufacturing process as in the case of the reflectarray element based on two sets of three parallel dipoles. A dual polarization dual-band (Tx-Rx) reflectarray antenna based on the new element has been designed, manufactured and measured. The antenna shows a very good performance in both Tx and Rx frequency bands with very low levels of cross-polarization. Numerical simulations carried out in the thesis have shown that the low levels of cross-polarization can be even made smaller by means of small rotations of the two sets of dipoles associated to each polarization.
Resumo:
Among the classical operators of mathematical physics the Laplacian plays an important role due to the number of different situations that can be modelled by it. Because of this a great effort has been made by mathematicians as well as by engineers to master its properties till the point that nearly everything has been said about them from a qualitative viewpoint. Quantitative results have also been obtained through the use of the new numerical techniques sustained by the computer. Finite element methods and boundary techniques have been successfully applied to engineering problems as can be seen in the technical literature (for instance [ l ] , [2], [3] . Boundary techniques are especially advantageous in those cases in which the main interest is concentrated on what is happening at the boundary. This situation is very usual in potential problems due to the properties of harmonic functions. In this paper we intend to show how a boundary condition different from the classical, but physically sound, is introduced without any violence in the discretization frame of the Boundary Integral Equation Method. The idea will be developed in the context of heat conduction in axisymmetric problems but it is hoped that its extension to other situations is straightforward. After the presentation of the method several examples will show the capabilities of modelling a physical problem.
Resumo:
The complete formulation of B.E.M. applied to the analysis of axisymmetric bodies acting in the plastic range is presented in this paper. The concept of derivative of a singular integral given by Mikhlin has been used in order to calculate the stresses in internal points. Also a semianalytical approach is proposed to compute the matrix coefficients, presenting the way in which it can be done and the results obtained.
Resumo:
The great developments that have occurred during the last few years in the finite element method and its applications has kept hidden other options for computation. The boundary integral element method now appears as a valid alternative and, in certain cases, has significant advantages. This method deals only with the boundary of the domain, while the F.E.M. analyses the whole domain. This has the following advantages: the dimensions of the problem to be studied are reduced by one, consequently simplifying the system of equations and preparation of input data. It is also possible to analyse infinite domains without discretization errors. These simplifications have the drawbacks of having to solve a full and non-symmetric matrix and some difficulties are incurred in the imposition of boundary conditions when complicated variations of the function over the boundary are assumed. In this paper a practical treatment of these problems, in particular boundary conditions imposition, has been carried out using the computer program shown below. Program SERBA solves general elastostatics problems in 2-dimensional continua using the boundary integral equation method. The boundary of the domain is discretized by line or elements over which the functions are assumed to vary linearly. Data (stresses and/or displacements) are introduced in the local co-ordinate system (element co-ordinates). Resulting stresses are obtained in local co-ordinates and displacements in a general system. The program has been written in Fortran ASCII and implemented on a 1108 Univac Computer. For 100 elements the core requirements are about 40 Kwords. Also available is a Fortran IV version (3 segments)implemented on a 21 MX Hewlett-Packard computer,using 15 Kwords.
Resumo:
This paper presents a computer program developed to run in a micro I.B.M.-P.C. wich incorporates some features in order to optimize the number of operations needed to compute the solution of plane potential problems governed by Laplace's equation by using the Boundary Integral Equation Method (B.I.E.M.). Also incorporated is a routine to plot isolines inside the domain under study.
Resumo:
Classical spherical gradient index (GRIN) lenses (such as Maxwell Fish Eye lens, Eaton lens, Luneburg lens, etc.) design procedure using the Abel integral equation is reviewed and reorganized. Each lens is fully defined by a function called the angle of flight which describes the ray deflection through the lens. The radial refractive index distribution is obtained by applying a linear integral transformation to the angle of flight. The interest of this formulation is in the linearity of the integral transformation which allows us to derive new solutions from linear combinations of known lenses. Beside the review of the classical GRIN designs, we present a numerical method for GRIN lenses defined by the Abel integral equation with fixed limits, which is an ill-posed problem.
Resumo:
A Boundary Integral Equation Method (B.I.E.M.)formulation is presented. After a general situation of the method among other usual numerical ones, the possibilities of discretization are developed. As this is done only in the boundary the treatment of tridimensional problems is greatly simplified in comparison with other methods. Some results on a simple shell with holes are finally presented.
Resumo:
In solid mechanics the weak formulation produces an integral equation ready for a discretization and with less restrictive requiremets than the standard field equations. Fundamentally the weak formulation is a expresion of a green formula. An alternative is to choose another green formula materializing a reciprocity relationship between the basis unknowns and an auxiliary family of functions. The degree of smoothness requiered to practice the discretization is then translated to the auxiliar functions. The subsequent discretization (constant, linear etc.)produces a set of equations on the boundary of the domain. For linear 3-D problems the BIEM appears then as a powerful alternative to FEM, because of the reduction to 2-D thanks to the features previously described.
Resumo:
El Método de las Ecuaciones Integrales es una potente alternativa a los Métodos de Dominio tales como el Método de los Elementos Finitos. La idea ensencial es la combinación de la clásica relación de la reciprocidad con la filosofía de la discretización del F.E.M. La aplicación a algunos problemas reales ha demostrado que en ciertos casos el B.I.E.M. es preferiole al F.E.M. y ello es especialmente así cuando los problemas a tratar son tridimensionales y con geometría complicada. En esta ocasión se analizan comparativamente algunos aspectos matemáticos del procedimiento = Boundary integral equation method (B.I.E.M.)is a powerful alternative to the domain methods, as the well know Finite Element Method (F .E.M.) The esential idea, are the combination of the classical reciprocity re!ations with the discretization phylosophy of F.E.M. The reduction in dimension of the domain to be discretized, the easy treatment of infinite domains and the high accuracy of the results are the main adventages of B.I.E.M. Between the drawacks the nonsymetry and non sparseness of the matrices to be treated are worth remembering. Application to several real problems has shown that in certain cases B.I.E.M. is better than F.E.M. and this is specially true when tridimensional problems of complicated geometries have to be treated. Active research is in progress of its extensión to non linear and time dependent problems.
Resumo:
El objeto del presente artículo es el estudio de singularidades en problemas de Potencial mediante el uso del Método de las Ecuaciones Integrales sobre el contorno del dominio en estudio. Frente a soluciones basadas en la mejora de la discretización, análisis asintótico o introducción de funciones de forma que representen mejor la evolución de la función, una nueva hipótesis es presentada: el término responsable de la singularidad es incluido en la integral sobre el contorno de la función auxiliar. Los resultados obtenidos mejoran los de soluciones anteriores simplificando también el tiempo de cálculo = The subject of this paper is the modelling of singularities in potential problems, using the Boundary Integral Equation Method. As a logical alternative to classical methods (discretization refinement, asymptotic analysis, high order interpolatory functions) a new hypothesis is presented: the singularity responsible term is included in the interpolatory shape function. As shown by several exemples results are splendid and computer time radically shortened.
Resumo:
Entre la impresionante floración de procedimientos de cálculo, provocada por la aplicación intensiva del ordenador, el llamado Método de los Elementos de Contorno (Boundary Element Method o Boundary Integral Equation Method) parece afianzarse como una alternativa útil al omnipresente Método de los Elementos Finitos que ya ha sido incorporado, como una herramienta de trabajo más, al cotidiano quehacer de la ingeniería. En España, tras unos intentos precursores que se señalan en el texto, la actividad más acusada en su desarrollo y mejora se ha centrado alrededor del Departamento que dirige uno de los autores. Después de la tesis doctoral de J. Domínguez en 1977 que introdujo en España la técnica del llamado "método directo", se han producido numerosas aportaciones en forma de artículos o tesis de investigación que han permitido alcanzar un nivel de conocimientos notable. En esta obrita se pretende transmitir parte de la experiencia adquirida, siquiera sea a nivel elemental y en un campo limitado de aplicación. La filosofía es semejante a la del pequeño libro de Hinton y Owen "A simple guide to finite elements" (Pineridge Press, 1980) que tanta aceptación ha tenido entre los principiantes. El libro se articula alrededor de un sólo tema, la solución del problema de Laplace, y se limitan los desarrollos matemáticos al mínimo imprescindible para el fácil seguimiento de áquel. Tras unos capítulos iniciales de motivación y centrado se desarrolla la técnica para problemas planos, tridimensionales y axisimétricos, limitando los razonamientos a los elementos más sencillos de variación constante o lineal. Finalmente, se incluye un capítulo descriptivo donde se avizoran temas que pueden provocar un futuro interés del estudioso. Para completar la información se ha añadido un apéndice en el que se recoge un pequeño programa para microordenador, con el objetivo de que se contemple la sencillez de programación para el caso plano. El programa es mejorable en muchos aspectos pero creemos que, con ello, mantiene un nivel de legibilidad adecuado para que el lector ensaye sobre él las modificaciones que se indican en los ejercicios al final del capítulo y justamente la provocación de ese aprendizaje es nuestro objetivo final.
Resumo:
After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.
Resumo:
The aim of the novel experimental measures presented in this paper is to show the improvement achieved in the computation time for a 2D self-adaptive hp finite element method (FEM) software accelerated through the Adaptive Cross Approximation (ACA) method. This algebraic method (ACA) was presented in an previous paper in the hp context for the analysis of open region problems, where the robust behaviour, good accuracy and high compression levels of ACA were demonstrated. The truncation of the infinite domain is settled through an iterative computation of the Integral Equation (IE) over a ficticious boundary, which, regardless its accuracy and efficiency, turns out to be the bottelneck of the code. It will be shown that in this context ACA reduces drastically the computational effort of the problem.
Resumo:
The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed