8 resultados para Cation symmetry
em Universidad Politécnica de Madrid
Resumo:
In direct drive Inertial Confinement Fusion (ICF), the typical laser beam to laser beam angle is around 30o. This fact makes the study of the irradiation symmetry agenuine 3D problem. In this paper we use the three dimensional version of the MULTI hydrocode to assess the symmetry of such ICF implosions. More specifically, we study a shock-ignition proposal for the Laser-M´egajoule facility (LMJ) in which two of the equatorial beam cones are used to implode and pre compress a spherical capsule (the “reference” capsule of HiPER project) made of 0.59 mg of pure Deuterium-Tritium mixture. The symmetry of this scheme is analysed and optimized to get a design inside the operating limits of LMJ. The studied configuration has been found essentially axial-symmetric, so that the use of 2D hydrocodes would be appropriate for this specific situation.
Resumo:
Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. These restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern when dealing with optical design. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. The general designing procedure will be described in detail
Resumo:
With the purpose of assessing the absorption coefficients of quantum dot solar cells, symmetry considerations are introduced into a Hamiltonian whose eigenvalues are empirical. In this way, the proper transformation from the Hamiltonian's diagonalized form to the form that relates it with Γ-point exact solutions through k.p envelope functions is built accounting for symmetry. Forbidden transitions are thus determined reducing the calculation burden and permitting a thoughtful discussion of the possible options for this transformation. The agreement of this model with the measured external quantum efficiency of a prototype solar cell is found to be excellent.
Resumo:
In direct drive Inertial Confinement Fusion (ICF), the typical laser beam to laser beam angle is around 30o. This fact makes the study of the irradiation symmetry agenuine 3D problem. In this paper we use the three dimensional version of the MULTI hydrocode to assess the symmetry of such ICF implosions. More specifically, we study a shock-ignition proposal for the Laser-M´egajoule facility (LMJ) in which two of the equatorial beam cones are used to implode and pre compress a spherical capsule (the “reference” capsule of HiPER project) made of 0.59 mg of pure Deuterium-Tritium mixture. The symmetry of this scheme is analysed and optimized to get a design inside the operating limits of LMJ. The studied configuration has been found essentially axial-symmetric, so that the use of 2D hydrocodes would be appropriate for this specific situation
Resumo:
In prokaryotes, nickel is an essential element participating in the structure of enzymes involved in multiple cellular processes. Nickel transport is a challenge for microorganisms since, although essential, high levels of this metal inside the cell are toxic. For this reason, bacteria have developed high-affinity nickel transporters as well as nickel-specific detoxification systems. Ultramafic soils, and soils contaminated with heavy metals are excellent sources of nickel resistant bacteria. Molecular analysis of strains isolated in the habitats has revealed novel genetic systems involved in adaptation to such hostile conditions.
Resumo:
Nickel, like other transition metals, can be toxic to cells even at moderate concentration (low microM range) by displacing essential metals from their native binding sites or by generating reactive oxygen species that cause oxidative DNA damage. For this reason, cells have evolved mechanisms to deal with excess nickel. Efflux systems include members of the Resistance-Nodulation-cell Division (RND) protein family, P-type ATPases, cation diffusion facilitators (CDF) and other resistance factors. Nickel-specific exporters have been characterized in Cupravidus metallidurans, Helicobacter pylori, Achromobacter xylosoxidans, Serratia marcenses and Escherichia coli.
Resumo:
Long-term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops.
Resumo:
The substitution of cation atoms by V, Cr and It in the natural and synthetic quaternary Cu2ZnSnS4 semiconductor is analyzed using first-principles methods. In most of the substitutions, the electronic structure of these modified CZTS is characterized for intermediate bands with different occupation and position within of the energy band gap. A study of the symmetry and composition of these intermediate bands is carried out for all substitutions. These bands permit additional photon absorption and emission channels depending on their occupation. The optical properties are obtained and analyzed. The absorption coefficients are split into contributions from the different absorption channels and from the inter- and intra-atomic components. The sub bandgap transitions are significant in many cases because the anion states contribute to the valence, conduction and intermediates bands. These properties could therefore be used for novel optoelectronic devices.