5 resultados para Cat ganglion retinal cell classification
em Universidad Politécnica de Madrid
Resumo:
As it is known, there are five types of neurons in the mammalian retinal layer allowing the detection of several important characteristics of the visual image impinging onto the visual system, namely, photoreceptors, horizontal cells, amacrine, bipolar and ganglion cells. And it is a well known fact too, that the amacrine neuron architecture allows a first detection for objects motion, being the most important retinal cell to this function. We have already studied and simulated the Dowling retina model and we have verified that many complex processes in visual detection is performed with the basis of the amacrine cell synaptic connections. This work will show how this structure may be employed for motion detection
Resumo:
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
Resumo:
Multi-junction solar cells are widely used in high-concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally-resolved DNI. The network of ground-based sun and sky-scanning radiometers AERONET (AErosol RObotic NETwork) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
Based on a previously reported logic cell structure (see SPIE, vol. 2038, p. 67-77, 1993), the two types of cells present at the inner and ganglion cell layers of the vertebrate retina and their intracellular response, as well as their connections with each other, have been simulated. These cells are amacrines and ganglion cells. The main scheme of the authors' configuration is shown in a figure. These two types of cells, as well as some of their possible interconnections, have been implemented with the authors' previously reported optical-processing element. As it has been shown, the authors' logic structure is able to process two optical input binary signals, being the output two logical functions. Moreover, if a delayed feedback from one of the two possible outputs to one or both of the inputs is introduced, a very different behaviour is obtained. Depending on the value of the time delay, an oscillatory output can be obtained from a constant optical input signal. Period and length pulses are dependent on delay values, both external and internal, as well as on other control signals. Moreover, a chaotic behaviour can be obtained too under certain conditions