2 resultados para Cancer -- Treatment

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the major problems related to cancer treatment is its recurrence. Without knowing in advance how likely the cancer will relapse, clinical practice usually recommends adjuvant treatments that have strong side effects. A way to optimize treatments is to predict the recurrence probability by analyzing a set of bio-markers. The NeoMark European project has identified a set of preliminary bio-markers for the case of oral cancer by collecting a large series of data from genomic, imaging, and clinical evidence. This heterogeneous set of data needs a proper representation in order to be stored, computed, and communicated efficiently. Ontologies are often considered the proper mean to integrate biomedical data, for their high level of formality and for the need of interoperable, universally accepted models. This paper presents the NeoMark system and how an ontology has been designed to integrate all its heterogeneous data. The system has been validated in a pilot in which data will populate the ontology and will be made public for further research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.