2 resultados para Calculated via upscaling
em Universidad Politécnica de Madrid
Resumo:
La planificación de la movilidad sostenible urbana es una tarea compleja que implica un alto grado de incertidumbre debido al horizonte de planificación a largo plazo, la amplia gama de paquetes de políticas posibles, la necesidad de una aplicación efectiva y eficiente, la gran escala geográfica, la necesidad de considerar objetivos económicos, sociales y ambientales, y la respuesta del viajero a los diferentes cursos de acción y su aceptabilidad política (Shiftan et al., 2003). Además, con las tendencias inevitables en motorización y urbanización, la demanda de terrenos y recursos de movilidad en las ciudades está aumentando dramáticamente. Como consecuencia de ello, los problemas de congestión de tráfico, deterioro ambiental, contaminación del aire, consumo de energía, desigualdades en la comunidad, etc. se hacen más y más críticos para la sociedad. Esta situación no es estable a largo plazo. Para enfrentarse a estos desafíos y conseguir un desarrollo sostenible, es necesario considerar una estrategia de planificación urbana a largo plazo, que aborde las necesarias implicaciones potencialmente importantes. Esta tesis contribuye a las herramientas de evaluación a largo plazo de la movilidad urbana estableciendo una metodología innovadora para el análisis y optimización de dos tipos de medidas de gestión de la demanda del transporte (TDM). La metodología nueva realizado se basa en la flexibilización de la toma de decisiones basadas en utilidad, integrando diversos mecanismos de decisión contrariedad‐anticipada y combinados utilidad‐contrariedad en un marco integral de planificación del transporte. La metodología propuesta incluye dos aspectos principales: 1) La construcción de escenarios con una o varias medidas TDM usando el método de encuesta que incorpora la teoría “regret”. La construcción de escenarios para este trabajo se hace para considerar específicamente la implementación de cada medida TDM en el marco temporal y marco espacial. Al final, se construyen 13 escenarios TDM en términos del más deseable, el más posible y el de menor grado de “regret” como resultado de una encuesta en dos rondas a expertos en el tema. 2) A continuación se procede al desarrollo de un marco de evaluación estratégica, basado en un Análisis Multicriterio de Toma de Decisiones (Multicriteria Decision Analysis, MCDA) y en un modelo “regret”. Este marco de evaluación se utiliza para comparar la contribución de los distintos escenarios TDM a la movilidad sostenible y para determinar el mejor escenario utilizando no sólo el valor objetivo de utilidad objetivo obtenido en el análisis orientado a utilidad MCDA, sino también el valor de “regret” que se calcula por medio del modelo “regret” MCDA. La función objetivo del MCDA se integra en un modelo de interacción de uso del suelo y transporte que se usa para optimizar y evaluar los impactos a largo plazo de los escenarios TDM previamente construidos. Un modelo de “regret”, llamado “referencedependent regret model (RDRM)” (modelo de contrariedad dependiente de referencias), se ha adaptado para analizar la contribución de cada escenario TDM desde un punto de vista subjetivo. La validación de la metodología se realiza mediante su aplicación a un caso de estudio en la provincia de Madrid. La metodología propuesta define pues un procedimiento técnico detallado para la evaluación de los impactos estratégicos de la aplicación de medidas de gestión de la demanda en el transporte, que se considera que constituye una herramienta de planificación útil, transparente y flexible, tanto para los planificadores como para los responsables de la gestión del transporte. Planning sustainable urban mobility is a complex task involving a high degree of uncertainty due to the long‐term planning horizon, the wide spectrum of potential policy packages, the need for effective and efficient implementation, the large geographical scale, the necessity to consider economic, social, and environmental goals, and the traveller’s response to the various action courses and their political acceptability (Shiftan et al., 2003). Moreover, with the inevitable trends on motorisation and urbanisation, the demand for land and mobility in cities is growing dramatically. Consequently, the problems of traffic congestion, environmental deterioration, air pollution, energy consumption, and community inequity etc., are becoming more and more critical for the society (EU, 2011). Certainly, this course is not sustainable in the long term. To address this challenge and achieve sustainable development, a long‐term perspective strategic urban plan, with its potentially important implications, should be established. This thesis contributes on assessing long‐term urban mobility by establishing an innovative methodology for optimizing and evaluating two types of transport demand management measures (TDM). The new methodology aims at relaxing the utility‐based decision‐making assumption by embedding anticipated‐regret and combined utilityregret decision mechanisms in an integrated transport planning framework. The proposed methodology includes two major aspects: 1) Construction of policy scenarios within a single measure or combined TDM policy‐packages using the survey method incorporating the regret theory. The purpose of building the TDM scenarios in this work is to address the specific implementation in terms of time frame and geographic scale for each TDM measure. Finally, 13 TDM scenarios are built in terms of the most desirable, the most expected and the least regret choice by means of the two‐round Delphi based survey. 2) Development of the combined utility‐regret analysis framework based on multicriteria decision analysis (MCDA). This assessment framework is used to compare the contribution of the TDM scenario towards sustainable mobility and to determine the best scenario considering not only the objective utility value obtained from the utilitybased MCDA, but also a regret value that is calculated via a regret‐based MCDA. The objective function of the utility‐based MCDA is integrated in a land use and transport interaction model and is used for optimizing and assessing the long term impacts of the constructed TDM scenarios. A regret based model, called referente dependent regret model (RDRM) is adapted to analyse the contribution of each TDM scenario in terms of a subjective point of view. The suggested methodology is implemented and validated in the case of Madrid. It defines a comprehensive technical procedure for assessing strategic effects of transport demand management measures, which can be useful, transparent and flexible planning tool both for planners and decision‐makers.
Resumo:
Esta Tesis presenta un nuevo método para filtrar errores en bases de datos multidimensionales. Este método no precisa ninguna información a priori sobre la naturaleza de los errores. En concreto, los errrores no deben ser necesariamente pequeños, ni de distribución aleatoria ni tener media cero. El único requerimiento es que no estén correlados con la información limpia propia de la base de datos. Este nuevo método se basa en una extensión mejorada del método básico de reconstrucción de huecos (capaz de reconstruir la información que falta de una base de datos multidimensional en posiciones conocidas) inventado por Everson y Sirovich (1995). El método de reconstrucción de huecos mejorado ha evolucionado como un método de filtrado de errores de dos pasos: en primer lugar, (a) identifica las posiciones en la base de datos afectadas por los errores y después, (b) reconstruye la información en dichas posiciones tratando la información de éstas como información desconocida. El método resultante filtra errores O(1) de forma eficiente, tanto si son errores aleatorios como sistemáticos e incluso si su distribución en la base de datos está concentrada o esparcida por ella. Primero, se ilustra el funcionamiento delmétodo con una base de datosmodelo bidimensional, que resulta de la dicretización de una función transcendental. Posteriormente, se presentan algunos casos prácticos de aplicación del método a dos bases de datos tridimensionales aerodinámicas que contienen la distribución de presiones sobre un ala a varios ángulos de ataque. Estas bases de datos resultan de modelos numéricos calculados en CFD. ABSTRACT A method is presented to filter errors out in multidimensional databases. The method does not require any a priori information about the nature the errors. In particular, the errors need not to be small, neither random, nor exhibit zero mean. Instead, they are only required to be relatively uncorrelated to the clean information contained in the database. The method is based on an improved extension of a seminal iterative gappy reconstruction method (able to reconstruct lost information at known positions in the database) due to Everson and Sirovich (1995). The improved gappy reconstruction method is evolved as an error filtering method in two steps, since it is adapted to first (a) identify the error locations in the database and then (b) reconstruct the information in these locations by treating the associated data as gappy data. The resultingmethod filters out O(1) errors in an efficient fashion, both when these are random and when they are systematic, and also both when they concentrated and when they are spread along the database. The performance of the method is first illustrated using a two-dimensional toymodel database resulting fromdiscretizing a transcendental function and then tested on two CFD-calculated, three-dimensional aerodynamic databases containing the pressure coefficient on the surface of a wing for varying values of the angle of attack. A more general performance analysis of the method is presented with the intention of quantifying the randomness factor the method admits maintaining a correct performance and secondly, quantifying the size of error the method can detect. Lastly, some improvements of the method are proposed with their respective verification.