4 resultados para CSV
em Universidad Politécnica de Madrid
Resumo:
El Trabajo Fin de Grado ha consistido en el diseño e implementación de una herramienta para la gestión y administración de los entrenamientos de atletas de deportes individuales. Hasta ahora los deportistas debían gestionar sus entrenamientos a través de hojas de cálculo, teniendo que dedicar tiempo al aprendizaje de herramientas como Microsoft Excel u OpenOffice Excel para personalizar las plantillas y guardar los datos, utilizar otras herramientas como Google Calendar para obtener una visión de un calendario con los entrenamientos realizados o bien utilizar programas hechos a medida para un deporte e incluso para un deportista. El objetivo principal consistía en desarrollar una herramienta que unificara todas las tareas para ofrecer al deportista las funciones de configuración de plantillas, registro y generación de gráficas de los datos registrados y visionado del calendario de entrenamientos de una forma ágil, sencilla e intuitiva, adaptándose a las necesidades de cualquier deporte o deportista. Para alcanzar el objetivo principal realizamos encuestas a atletas de una gran diversidad de deportes individuales, detectando las particularidades de cada deporte y analizando los datos que nos ofrecían para alcanzar el objetivo de diseñar una herramienta versátil que permitiera su uso independientemente de los parámetros que se quisiera registrar de cada entrenamiento. La herramienta generada es una herramienta programada en Java, que ofrece portabilidad a cualquier sistema operativo que lo soporte, sin ser necesario realizar una instalación previa. Es una aplicación plug and play en la que solo se necesita del fichero ejecutable para su funcionamiento; de esta forma facilitamos que el deportista guarde toda la información en muy poco espacio, 6 megabytes aproximadamente, y pueda llevarla a cualquier lado en un pen drive o en sistemas de almacenamiento en la nube. Además, los ficheros en los que se registran los datos son ficheros CSV (valores separados por comas) con un formato estandarizado que permite la exportación a otras herramientas. Como conclusión el atleta ahorra tiempo y esfuerzo en tareas ajenas a la práctica del deporte y disfruta de una herramienta que le permite analizar de diferentes maneras cada uno de los parámetros registrados para ver su evolución y ayudarle a mejorar aquellos aspectos que sean deficientes. ---ABSTRACT---The Final Project consists in the design and implementation of a tool for the management and administration of training logs for individual athletes. Until now athletes had to manage their workouts through spreadsheets, having to spend time in learning tools such as Microsoft Excel or OpenOffice in order to save the data, others tools like Google Calendar to check their training plan or buy specifics programs designed for a specific sport or even for an athlete. The main purpose of this project is to develop an intuitive and straightforward tool that unifies all tasks offering setup functions, data recording, graph generation and training schedule to the athletes. Whit this in mind, we have interviewed athletes from a wide range of individual sports, identifying their specifications and analyzing the data provided to design a flexible tool that registers multitude of training parameters. This tool has been coded in Java, providing portability to any operating system that supports it, without installation being required. It is a plug and play application, that only requires the executable file to start working. Accordingly, athletes can keep all the information in a relative reduced space (aprox 6 megabytes) and save it in a pen drive or in the cloud. In addition, the files whit the stored data are CSV (comma separated value) files whit a standardized format that allows exporting to other tools. Consequently athletes will save time and effort on tasks unrelated to the practice of sports. The new tool will enable them to analyze in detail all the existing data and improve in those areas with development opportunities.
Resumo:
Este proyecto tiene como objetivo la implementación de un sistema capaz de analizar el movimiento corporal a partir de unos puntos cinemáticos. Estos puntos cinemáticos se obtienen con un programa previo y se captan con la cámara kinect. Para ello el primer paso es realizar un estudio sobre las técnicas y conocimientos existentes relacionados con el movimiento de las personas. Se sabe que Rudolph Laban fue uno de sus mayores exponentes y gracias a sus observaciones se establece una relación entre la personalidad, el estado anímico y la forma de moverse de un individuo. Laban acuñó el término esfuerzo, que hace referencia al modo en que se administra la energía que genera el movimiento y de qué manera se modula en las secuencias, es una manera de describir la intención de las expresiones internas. El esfuerzo se divide en 4 categorías: peso, espacio, tiempo y flujo, y cada una de estas categorías tiene una polaridad denominada elemento de esfuerzo. Con estos 8 elementos de esfuerzo un movimiento queda caracterizado. Para poder cuantificar los citados elementos de esfuerzo se buscan movimientos que representen a alguno de ellos. Los movimientos se graban con la cámara kinect y se guardan sus valores en un archivo csv. Para el procesado de estos datos se establece que el sistema más adecuado es una red neuronal debido a su flexibilidad y capacidad a la hora de procesar entradas no lineales. Para la implementación de la misma se requiere un amplio estudio que incluye: topologías, funciones de activación, tipos de aprendizaje, algoritmos de entrenamiento entre otros. Se decide que la red tenga dos capas ocultas, para mejor procesado de los datos, que sea estática, siga un proceso de cálculo hacia delante (Feedforward) y el algoritmo por el que se rija su aprendizaje sea el de retropropagación (Backpropagation) En una red estática las entradas han de ser valores fijos, es decir, no pueden variar en el tiempo por lo que habrá que implementar un programa intermedio que haga una media aritmética de los valores. Una segunda prueba con la misma red trata de comprobar si sería capaz de reconocer movimientos que estuvieran caracterizados por más de un elemento de esfuerzo. Para ello se vuelven a grabar los movimientos, esta vez en parejas de dos, y el resto del proceso es igual. ABSTRACT. The aim of this project is the implementation of a system able to analyze body movement from cinematic data. This cinematic data was obtained with a previous program. The first step is carrying out a study about the techniques and knowledge existing nowadays related to people movement. It is known that Rudolf Laban was one the greatest exponents of this field and thanks to his observations a relation between personality, mood and the way the person moves was made. Laban coined the term effort, that refers to the way energy generated from a movement is managed and how it is modulated in the sequence, this is a method of describing the inner intention of the person. The effort is divided into 4 categories: weight, space, time and flow, and each of these categories have 2 polarities named elements of effort. These 8 elements typify a movement. We look for movements that are made of these elements so we can quantify them. The movements are recorded with the kinect camera and saved in a csv file. In order to process this data a neural network is chosen owe to its flexibility and capability of processing non-linear inputs. For its implementation it is required a wide study regarding: topology, activation functions, different types of learning methods and training algorithms among others. The neural network for this project will have 2 hidden layers, it will be static and follow a feedforward process ruled by backpropagation. In a static net the inputs must be fixed, this means they cannot vary in time, so we will have to implement an intermediate program to calculate the average of our data. A second test for our net will be checking its ability to recognize more than one effort element in just one movement. In order to do this all the movements are recorded again but this time in pairs, the rest of the process remains the same.
Resumo:
Este proyecto fín de carrera describe el desarrollo de un sistema de estimación de mapas de profundidad densos a partir de secuencias reales de vídeo 3D. Está motivado por la necesidad de utilizar la información de profundidad de un vídeo estéreo para calcular las oclusiones en el módulo de inserción de objetos sintéticos interactivos desarrollado en el proyecto ImmersiveTV. En el receptor 3DTV, el sistema debe procesar en tiempo real secuencias estéreo de escenas reales en alta resolución con formato Side-by-Side. Se analizan las características del contenido para conocer los problemas a enfrentar. Obtener un mapa de profundidad denso mediante correspondencia estéreo (stereo matching) permite calcular las oclusiones del objeto sintético con la escena. No es necesario que el valor de disparidad asignado a cada píxel sea preciso, basta con distinguir los distintos planos de profundidad ya que se trabaja con distancias relativas. La correspondencia estéreo exige que las dos vistas de entrada estén alineadas. Primero se comprueba si se deben rectificar y se realiza un repaso teórico de calibración y rectificación, resumiendo algunos métodos a considerar en la resolución del problema. Para estimar la profundidad, se revisan técnicas de correspondencia estéreo densa habituales, seleccionando un conjunto de implementaciones con el fin de valorar cuáles son adecuadas para resolver el problema, incluyendo técnicas locales, globales y semiglobales, algunas sobre CPU y otras para GPU; modificando algunas para soportar valores negativos de disparidad. No disponer de ground truth de los mapas de disparidad del contenido real supone un reto que obliga a buscar métodos indirectos de comparación de resultados. Para una evaluación objetiva, se han revisado trabajos relacionados con la comparación de técnicas de correspondencia y entornos de evaluación existentes. Se considera el mapa de disparidad como error de predicción entre vistas desplazadas. A partir de la vista derecha y la disparidad de cada píxel, puede reconstruirse la vista izquierda y, comparando la imagen reconstruida con la original, se calculan estadísticas de error y las tasas de píxeles con disparidad inválida y errónea. Además, hay que tener en cuenta la eficiencia de los algoritmos midiendo la tasa de cuadros por segundo que pueden procesar. Observando los resultados, atendiendo a los criterios de maximización de PSNR y minimización de la tasa de píxeles incorrectos, se puede elegir el algoritmo con mejor comportamiento. Como resultado, se ha implementado una herramienta que integra el sistema de estimación de mapas de disparidad y la utilidad de evaluación de resultados. Trabaja sobre una imagen, una secuencia o un vídeo estereoscópico. Para realizar la correspondencia, permite escoger entre un conjunto de algoritmos que han sido adaptados o modificados para soportar valores negativos de disparidad. Para la evaluación, se ha implementado la reconstrucción de la vista de referencia y la comparación con la original mediante el cálculo de la RMS y PSNR, como medidas de error, además de las tasas de píxeles inválidos e incorrectos y de la eficiencia en cuadros por segundo. Finalmente, se puede guardar las imágenes (o vídeos) generados como resultado, junto con un archivo de texto en formato csv con las estadísticas para su posterior comparación.
Resumo:
En los últimos años ha habido un gran aumento de fuentes de datos biomédicos. La aparición de nuevas técnicas de extracción de datos genómicos y generación de bases de datos que contienen esta información ha creado la necesidad de guardarla para poder acceder a ella y trabajar con los datos que esta contiene. La información contenida en las investigaciones del campo biomédico se guarda en bases de datos. Esto se debe a que las bases de datos permiten almacenar y manejar datos de una manera simple y rápida. Dentro de las bases de datos existen una gran variedad de formatos, como pueden ser bases de datos en Excel, CSV o RDF entre otros. Actualmente, estas investigaciones se basan en el análisis de datos, para a partir de ellos, buscar correlaciones que permitan inferir, por ejemplo, tratamientos nuevos o terapias más efectivas para una determinada enfermedad o dolencia. El volumen de datos que se maneja en ellas es muy grande y dispar, lo que hace que sea necesario el desarrollo de métodos automáticos de integración y homogeneización de los datos heterogéneos. El proyecto europeo p-medicine (FP7-ICT-2009-270089) tiene como objetivo asistir a los investigadores médicos, en este caso de investigaciones relacionadas con el cáncer, proveyéndoles con nuevas herramientas para el manejo de datos y generación de nuevo conocimiento a partir del análisis de los datos gestionados. La ingestión de datos en la plataforma de p-medicine, y el procesamiento de los mismos con los métodos proporcionados, buscan generar nuevos modelos para la toma de decisiones clínicas. Dentro de este proyecto existen diversas herramientas para integración de datos heterogéneos, diseño y gestión de ensayos clínicos, simulación y visualización de tumores y análisis estadístico de datos. Precisamente en el ámbito de la integración de datos heterogéneos surge la necesidad de añadir información externa al sistema proveniente de bases de datos públicas, así como relacionarla con la ya existente mediante técnicas de integración semántica. Para resolver esta necesidad se ha creado una herramienta, llamada Term Searcher, que permite hacer este proceso de una manera semiautomática. En el trabajo aquí expuesto se describe el desarrollo y los algoritmos creados para su correcto funcionamiento. Esta herramienta ofrece nuevas funcionalidades que no existían dentro del proyecto para la adición de nuevos datos provenientes de fuentes públicas y su integración semántica con datos privados.---ABSTRACT---Over the last few years, there has been a huge growth of biomedical data sources. The emergence of new techniques of genomic data generation and data base generation that contain this information, has created the need of storing it in order to access and work with its data. The information employed in the biomedical research field is stored in databases. This is due to the capability of databases to allow storing and managing data in a quick and simple way. Within databases there is a variety of formats, such as Excel, CSV or RDF. Currently, these biomedical investigations are based on data analysis, which lead to the discovery of correlations that allow inferring, for example, new treatments or more effective therapies for a specific disease or ailment. The volume of data handled in them is very large and dissimilar, which leads to the need of developing new methods for automatically integrating and homogenizing the heterogeneous data. The p-medicine (FP7-ICT-2009-270089) European project aims to assist medical researchers, in this case related to cancer research, providing them with new tools for managing and creating new knowledge from the analysis of the managed data. The ingestion of data into the platform and its subsequent processing with the provided tools aims to enable the generation of new models to assist in clinical decision support processes. Inside this project, there exist different tools related to areas such as the integration of heterogeneous data, the design and management of clinical trials, simulation and visualization of tumors and statistical data analysis. Particularly in the field of heterogeneous data integration, there is a need to add external information from public databases, and relate it to the existing ones through semantic integration methods. To solve this need a tool has been created: the term Searcher. This tool aims to make this process in a semiautomatic way. This work describes the development of this tool and the algorithms employed in its operation. This new tool provides new functionalities that did not exist inside the p-medicine project for adding new data from public databases and semantically integrate them with private data.