3 resultados para CORRELATION NETWORKS
em Universidad Politécnica de Madrid
Resumo:
We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.
Resumo:
Fixation-off sensitivity (FOS) denotes the forms of EEG abnormalities, which are elicited by elimination of central vision or fixation. The phenomenon seems to depend on variables that modulate the alpha rhythm, however, the cerebral mechanisms underlying FOS remain unclear [1]. The scarce previous fMRI findings related to FOS have shown activation in extrastriate cortex [2] and also in frontal areas [3][4]. On the other hand, simultaneous EEG-fMRI technique has been used to assess the relationship between spontaneous power fluctuations of electrical rhythms and associated fMRI signal modulations. These studies have identified that lateral frontoparietal networks show a negative correlation with alpha band in healthy subjects. This neuroanatomical pattern is related to attentional processes and cognitive resources. Moreover, a sub-beta band (17-23 Hz) has been identified with posterior cingulate, temporoparietal junction and dorso-medial prefrontal cortex activations, which correspond to the DMN [5][6].
Resumo:
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.