9 resultados para COMPUTATION METHODS
em Universidad Politécnica de Madrid
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [Prog. Theor. Phys. 92 (1994), 939] boundary integrals. The analysis has been carried out by studying the convergence of the first- and second-order differential operators as the smoothing length (that is, the characteristic length on which relies the SPH interpolation) decreases. These differential operators are of fundamental importance for the computation of the viscous drag and the viscous/diffusive terms in the momentum and energy equations. It has been proved that close to the boundaries some of the mirroring techniques leads to intrinsic inaccuracies in the convergence of the differential operators. A consistent formulation has been derived starting from Takeda et al. boundary integrals (see the above reference). This original formulation allows implementing no-slip boundary conditions consistently in many practical applications as viscous flows and diffusion problems.
Resumo:
This paper presents a study of the effectiveness of three different algorithms for the parallelization of logic programs based on compile-time detection of independence among goals. The algorithms are embedded in a complete parallelizing compiler, which incorporates different abstract interpretation-based program analyses. The complete system shows the task of automatic program parallelization to be practical. The trade-offs involved in using each of the algorithms in this task are studied experimentally, weaknesses of these identified, and possible improvements discussed.
Resumo:
Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
Over the past 20 years,theuse of Computer Algebra Systems(CAS) has helped with the teaching of mathematics inengineer-ingschools. However the traditional use of CAS only in math labs has led to a narrow view by the student: the CAS is an additional work, not included in the learning process. The didactic guidelines of the European Higher Education Area(EHEA) propose a new teaching–learning model based on competencies. We suggest the use of the CAS be adapted to the new rules. In this paper,we present a model for the integrated use of the CAS,and we describe and analyze two experiments carried out in the academic year2011–2012. Our analysis suggests that the use of CAS in all learning and assessment activities has the potential to positively influence the development of competencies.
Resumo:
Dominance measuring methods are an approach for dealing with complex decision-making problems with imprecise information within multi-attribute value/utility theory. These methods are based on the computation of pairwise dominance values and exploit the information in the dominance matrix in different ways to derive measures of dominance intensity and rank the alternatives under consideration. In this paper we review dominance measuring methods proposed in the literature for dealing with imprecise information (intervals, ordinal information or fuzzy numbers) about decision-makers? preferences and their performance in comparison with other existing approaches, like SMAA and SMAA-II or Sarabando and Dias? method.
Resumo:
The purpose of this Project is, first and foremost, to disclose the topic of nonlinear vibrations and oscillations in mechanical systems and, namely, nonlinear normal modes NNMs to a greater audience of researchers and technicians. To do so, first of all, the dynamical behavior and properties of nonlinear mechanical systems is outlined from the analysis of a pair of exemplary models with the harmonic balanced method. The conclusions drawn are contrasted with the Linear Vibration Theory. Then, it is argued how the nonlinear normal modes could, in spite of their limitations, predict the frequency response of a mechanical system. After discussing those introductory concepts, I present a Matlab package called 'NNMcont' developed by a group of researchers from the University of Liege. This package allows the analysis of nonlinear normal modes of vibration in a range of mechanical systems as extensions of the linear modes. This package relies on numerical methods and a 'continuation algorithm' for the computation of the nonlinear normal modes of a conservative mechanical system. In order to prove its functionality, a two degrees of freedom mechanical system with elastic nonlinearities is analized. This model comprises a mass suspended on a foundation by means of a spring-viscous damper mechanism -analogous to a very simplified model of most suspended structures and machines- that has attached a mass damper as a passive vibration control system. The results of the computation are displayed on frequency energy plots showing the NNMs branches along with modal curves and time-series plots for each normal mode. Finally, a critical analysis of the results obtained is carried out with an eye on devising what they can tell the researcher about the dynamical properties of the system.
Resumo:
El principal objetivo de esta tesis es el desarrollo de métodos de síntesis de diagramas de radiación de agrupaciones de antenas, en donde se realiza una caracterización electromagnética rigurosa de los elementos radiantes y de los acoplos mutuos existentes. Esta caracterización no se realiza habitualmente en la gran mayoría de métodos de síntesis encontrados en la literatura, debido fundamentalmente a dos razones. Por un lado, se considera que el diagrama de radiación de un array de antenas se puede aproximar con el factor de array que únicamente tiene en cuenta la posición de los elementos y las excitaciones aplicadas a los mismos. Sin embargo, como se mostrará en esta tesis, en múltiples ocasiones un riguroso análisis de los elementos radiantes y del acoplo mutuo entre ellos es importante ya que los resultados obtenidos pueden ser notablemente diferentes. Por otro lado, no es sencillo combinar un método de análisis electromagnético con un proceso de síntesis de diagramas de radiación. Los métodos de análisis de agrupaciones de antenas suelen ser costosos computacionalmente, ya que son estructuras grandes en términos de longitudes de onda. Generalmente, un diseño de un problema electromagnético suele comprender varios análisis de la estructura, dependiendo de las variaciones de las características, lo que hace este proceso muy costoso. Dos métodos se utilizan en esta tesis para el análisis de los arrays acoplados. Ambos están basados en el método de los elementos finitos, la descomposición de dominio y el análisis modal para analizar la estructura radiante y han sido desarrollados en el grupo de investigación donde se engloba esta tesis. El primero de ellos es una técnica de análisis de arrays finitos basado en la aproximación de array infinito. Su uso es indicado para arrays planos de grandes dimensiones con elementos equiespaciados. El segundo caracteriza el array y el acoplo mutuo entre elementos a partir de una expansión en modos esféricos del campo radiado por cada uno de los elementos. Este método calcula los acoplos entre los diferentes elementos del array usando las propiedades de traslación y rotación de los modos esféricos. Es capaz de analizar agrupaciones de elementos distribuidos de forma arbitraria. Ambas técnicas utilizan una formulación matricial que caracteriza de forma rigurosa el campo radiado por el array. Esto las hace muy apropiadas para su posterior uso en una herramienta de diseño, como los métodos de síntesis desarrollados en esta tesis. Los resultados obtenidos por estas técnicas de síntesis, que incluyen métodos rigurosos de análisis, son consecuentemente más precisos. La síntesis de arrays consiste en modificar uno o varios parámetros de las agrupaciones de antenas buscando unas determinadas especificaciones de las características de radiación. Los parámetros utilizados como variables de optimización pueden ser varios. Los más utilizados son las excitaciones aplicadas a los elementos, pero también es posible modificar otros parámetros de diseño como son las posiciones de los elementos o las rotaciones de estos. Los objetivos de las síntesis pueden ser dirigir el haz o haces en una determinada dirección o conformar el haz con formas arbitrarias. Además, es posible minimizar el nivel de los lóbulos secundarios o del rizado en las regiones deseadas, imponer nulos que evitan posibles interferencias o reducir el nivel de la componente contrapolar. El método para el análisis de arrays finitos basado en la aproximación de array infinito considera un array finito como un array infinito con un número finito de elementos excitados. Los elementos no excitados están físicamente presentes y pueden presentar tres diferentes terminaciones, corto-circuito, circuito abierto y adaptados. Cada una de estas terminaciones simulará mejor el entorno real en el que el array se encuentre. Este método de análisis se integra en la tesis con dos métodos diferentes de síntesis de diagramas de radiación. En el primero de ellos se presenta un método basado en programación lineal en donde es posible dirigir el haz o haces, en la dirección deseada, además de ejercer un control sobre los lóbulos secundarios o imponer nulos. Este método es muy eficiente y obtiene soluciones óptimas. El mismo método de análisis es también aplicado a un método de conformación de haz, en donde un problema originalmente no convexo (y de difícil solución) es transformado en un problema convexo imponiendo restricciones de simetría, resolviendo de este modo eficientemente un problema complejo. Con este método es posible diseñar diagramas de radiación con haces de forma arbitraria, ejerciendo un control en el rizado del lóbulo principal, así como en el nivel de los lóbulos secundarios. El método de análisis de arrays basado en la expansión en modos esféricos se integra en la tesis con tres técnicas de síntesis de diagramas de radiación. Se propone inicialmente una síntesis de conformación del haz basado en el método de la recuperación de fase resuelta de forma iterativa mediante métodos convexos, en donde relajando las restricciones del problema original se consiguen unas soluciones cercanas a las óptimas de manera eficiente. Dos métodos de síntesis se han propuesto, donde las variables de optimización son las posiciones y las rotaciones de los elementos respectivamente. Se define una función de coste basada en la intensidad de radiación, la cual es minimizada de forma iterativa con el método del gradiente. Ambos métodos reducen el nivel de los lóbulos secundarios minimizando una función de coste. El gradiente de la función de coste es obtenido en términos de la variable de optimización en cada método. Esta función de coste está formada por la expresión rigurosa de la intensidad de radiación y por una función de peso definida por el usuario para imponer prioridades sobre las diferentes regiones de radiación, si así se desea. Por último, se presenta un método en el cual, mediante técnicas de programación entera, se buscan las fases discretas que generan un diagrama de radiación lo más cercano posible al deseado. Con este método se obtienen diseños que minimizan el coste de fabricación. En cada uno de las diferentes técnicas propuestas en la tesis, se presentan resultados con elementos reales que muestran las capacidades y posibilidades que los métodos ofrecen. Se comparan los resultados con otros métodos disponibles en la literatura. Se muestra la importancia de tener en cuenta los diagramas de los elementos reales y los acoplos mutuos en el proceso de síntesis y se comparan los resultados obtenidos con herramientas de software comerciales. ABSTRACT The main objective of this thesis is the development of optimization methods for the radiation pattern synthesis of array antennas in which a rigorous electromagnetic characterization of the radiators and the mutual coupling between them is performed. The electromagnetic characterization is usually overlooked in most of the available synthesis methods in the literature, this is mainly due to two reasons. On the one hand, it is argued that the radiation pattern of an array is mainly influenced by the array factor and that the mutual coupling plays a minor role. As it is shown in this thesis, the mutual coupling and the rigorous characterization of the array antenna influences significantly in the array performance and its computation leads to differences in the results obtained. On the other hand, it is difficult to introduce an analysis procedure into a synthesis technique. The analysis of array antennas is generally expensive computationally as the structure to analyze is large in terms of wavelengths. A synthesis method requires to carry out a large number of analysis, this makes the synthesis problem very expensive computationally or intractable in some cases. Two methods have been used in this thesis for the analysis of coupled antenna arrays, both of them have been developed in the research group in which this thesis is involved. They are based on the finite element method (FEM), the domain decomposition and the modal analysis. The first one obtains a finite array characterization with the results obtained from the infinite array approach. It is specially indicated for the analysis of large arrays with equispaced elements. The second one characterizes the array elements and the mutual coupling between them with a spherical wave expansion of the radiated field by each element. The mutual coupling is computed using the properties of translation and rotation of spherical waves. This method is able to analyze arrays with elements placed on an arbitrary distribution. Both techniques provide a matrix formulation that makes them very suitable for being integrated in synthesis techniques, the results obtained from these synthesis methods will be very accurate. The array synthesis stands for the modification of one or several array parameters looking for some desired specifications of the radiation pattern. The array parameters used as optimization variables are usually the excitation weights applied to the array elements, but some other array characteristics can be used as well, such as the array elements positions or rotations. The desired specifications may be to steer the beam towards any specific direction or to generate shaped beams with arbitrary geometry. Further characteristics can be handled as well, such as minimize the side lobe level in some other radiating regions, to minimize the ripple of the shaped beam, to take control over the cross-polar component or to impose nulls on the radiation pattern to avoid possible interferences from specific directions. The analysis method based on the infinite array approach considers an infinite array with a finite number of excited elements. The infinite non-excited elements are physically present and may have three different terminations, short-circuit, open circuit and match terminated. Each of this terminations is a better simulation for the real environment of the array. This method is used in this thesis for the development of two synthesis methods. In the first one, a multi-objective radiation pattern synthesis is presented, in which it is possible to steer the beam or beams in desired directions, minimizing the side lobe level and with the possibility of imposing nulls in the radiation pattern. This method is very efficient and obtains optimal solutions as it is based on convex programming. The same analysis method is used in a shaped beam technique in which an originally non-convex problem is transformed into a convex one applying symmetry restrictions, thus solving a complex problem in an efficient way. This method allows the synthesis of shaped beam radiation patterns controlling the ripple in the mainlobe and the side lobe level. The analysis method based on the spherical wave expansion is applied for different synthesis techniques of the radiation pattern of coupled arrays. A shaped beam synthesis is presented, in which a convex formulation is proposed based on the phase retrieval method. In this technique, an originally non-convex problem is solved using a relaxation and solving a convex problems iteratively. Two methods are proposed based on the gradient method. A cost function is defined involving the radiation intensity of the coupled array and a weighting function that provides more degrees of freedom to the designer. The gradient of the cost function is computed with respect to the positions in one of them and the rotations of the elements in the second one. The elements are moved or rotated iteratively following the results of the gradient. A highly non-convex problem is solved very efficiently, obtaining very good results that are dependent on the starting point. Finally, an optimization method is presented where discrete digital phases are synthesized providing a radiation pattern as close as possible to the desired one. The problem is solved using linear integer programming procedures obtaining array designs that greatly reduce the fabrication costs. Results are provided for every method showing the capabilities that the above mentioned methods offer. The results obtained are compared with available methods in the literature. The importance of introducing a rigorous analysis into the synthesis method is emphasized and the results obtained are compared with a commercial software, showing good agreement.