8 resultados para COGNITIVE EVALUATION
em Universidad Politécnica de Madrid
Resumo:
The progressive ageing of population has turned the mild cognitive impairment (MCI) into a prevalent disease suffered by elderly. Consequently, the spatial disorientation has become a significant problem for older people and their caregivers. The ambient-assisted living applications are offering location-based services for empowering elderly to go outside and encouraging a greater independence. Therefore, this paper describes the design and technical evaluation of a location-awareness service enabler aimed at supporting and managing probable wandering situations of a person with MCI. Through the presence capabilities of the IP multimedia subsystem (IMS) architecture, the service will alert patient's contacts if a hazardous situation is detected depending on his location. Furthermore, information about the older person's security areas has been included in the user profile managed by IMS. In doing so, the service enabler introduced contribute to “context-awareness” paradigm allowing the adaptation and personalization of services depending on user's context and specific conditions or preferences.
Resumo:
Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.
Resumo:
Acquired Brain Injury (ABI) has become one of the most common causes of neurological disability in developed countries. Cognitive disorders result in a loss of independence and therefore patients? quality of life. Cognitive rehabilitation aims to promote patients? skills to achieve their highest degree of personal autonomy. New technologies such as interactive video, whereby real situations of daily living are reproduced within a controlled virtual environment, enable the design of personalized therapies with a high level of generalization and a great ecological validity. This paper presents a graphical tool that allows neuropsychologists to design, modify, and configure interactive video therapeutic activities, through the combination of graphic and natural language. The tool has been validated creating several Activities of Daily Living and a preliminary usability evaluation has been performed showing a good clinical acceptance in the definition of complex interactive video therapies for cognitive rehabilitation.
Resumo:
This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.
Resumo:
La condición física, o como mejor se la conoce hoy en día el “fitness”, es una variable que está cobrando gran protagonismo, especialmente desde la perspectiva de la salud. La mejora de la calidad de vida que se ha experimentado en los últimos años en las sociedades desarrolladas, conlleva un aumento de la esperanza de vida, lo que hace que cada vez más personas vivan más años. Este rápido crecimiento de la población mayor de 60 años hace que, un grupo poblacional prácticamente olvidado desde el punto de vista de la investigación científica en el campo de la actividad física y del deporte, cobre gran relevancia, con el fin de poder ayudar a alcanzar el dicho “no se trata de aportar años a la vida sino vida a lo años”. La presente memoria de Tesis Doctoral tiene como principal objetivo valorar los niveles de fitness en población mayor española, además de analizar la relación existente entre el fitness, sus condicionantes y otros aspectos de la salud, tales como la composición corporal y el estado cognitivo. Entendemos que para poder establecer futuras políticas de salud pública en relación a la actividad física y el envejecimiento activo es necesario conocer cuáles son los niveles de partida de la población mayor en España y sus condicionantes. El trabajo está basado en los datos del estudio multicéntrico EXERNET (Estudio Multi-céntrico para la Evaluación de los Niveles de Condición Física y su relación con Estilos de Vida Saludables en población mayor española no institucionalizada), así como en los datos de dos estudios, llevados a cabo en población mayor institucionalizada. Se han analizado un total de 3136 mayores de vida independiente, procedentes de 6 comunidades autónomas, y 153 mayores institucionalizados en residencias de la Comunidad de Madrid. Los principales resultados de esta tesis son los siguientes: a) Fueron establecidos los valores de referencia, así como las curvas de percentiles, para cada uno de los test de fitness, de acuerdo a la edad y al sexo, en población mayor española de vida independiente y no institucionalizada. b) Los varones obtuvieron mejores niveles de fitness que las mujeres, excepto en los test de flexibilidad; existe una tendencia a disminuir la condición física en ambos sexos a medida que la edad aumenta. c) Niveles bajos de fitness funcional fueron asociados con un aumento en la percepción de problemas. d) El nivel mínimo de fitness funcional a partir del cual los mayores perciben problemas en sus actividades de la vida diaria (AVD) es similar en ambos sexos. e) Niveles elevados de fitness fueron asociados con un menor riesgo de sufrir obesidad sarcopénica y con una mejor salud percibida en los mayores. f) Las personas mayores con obesidad sarcopénica tienen menor capacidad funcional que las personas mayores sanas. g) Niveles elevados de fuerza fueron asociados con un mejor estado cognitivo siendo el estado cognitivo la variable que más influye en el deterioro de la fuerza, incluso más que el sexo y la edad. ABSTRACT Fitness is a variable that is gaining in prominence, especially from the health perspective. Improvement of life quality that has been experienced in the last few years in developed countries, leads to an expanded life expectancy, increasing the numbers of people living longer. This population consisting of people of over 60 years, an almost forgotten population group from the point of view of scientific research in the field of physical activity and sport, is becoming increasingly important, with the main aim of helping to achieve the saying “do not only add years to life, but also add life to years”. The principal aim of the current thesis was to assess physical fitness levels in Spanish elderly people, of over 65 years, analyzing relationship between physical fitness, its determinants, and other aspects of health such as body composition and cognitive status. In order to establish further public health policies in relation to physical activity and active ageing it is necessary to identify the starting physical fitness levels of the Spanish population and their determinants. The work is based on data from the EXERNET multi-center study ("Multi-center Study for the Evaluation of Fitness levels and their relationship to Healthy Lifestyles in noninstitutionalized Spanish elderly"), and on data from two studies conducted in institutionalized elderly people: a total of 3136 non-institutionalized elderly, from 6 Regions of Spain, and 153 institutionalized elderly in nursing homes of Madrid. The main outcomes of this thesis are: a) sex- and age-specific physical fitness normative values and percentile curves for independent and non-institutionalized Spanish elderly were established. b) Greater physical fitness was present in the elderly men than in women, except for the flexibility test, and a trend toward decreased physical fitness in both sexes as their age increased. c) Lower levels of functional fitness were associated with increased perceived problems. d) The minimum functional fitness level at which older adults perceive problems in their ADLs, is similar for both sexes e) Higher levels of physical fitness were associated with a reduced risk of suffering sarcopenic obesity and better perceived health among the elderly. f) The elderly with sarcopenic obesity have lower physical functioning than healthy counterparts. g) Higher strength values were associated with better cognitive status with cognitive status being the most influencing variable in strength deterioration even more than sex and age.
Resumo:
This paper presents the design, development and first evaluation of an algorithm, named Intelligent Therapy Assistant (ITA), which automatically selects, configures and schedules rehabilitation tasks for patients with cognitive impairments after an episode of Acquired Brain Injury. The ITA is integrated in "Guttmann, Neuro Personal Trainer" (GNPT), a cognitive tele-rehabilitation platform that provides neuropsychological services.
Resumo:
Cognitive rehabilitation aims to remediate or alleviate the cognitive deficits appearing after an episode of acquired brain injury (ABI). The purpose of this work is to describe the telerehabilitation platform called Guttmann Neuropersonal Trainer (GNPT) which provides new strategies for cognitive rehabilitation, improving efficiency and access to treatments, and to increase knowledge generation from the process. A cognitive rehabilitation process has been modeled to design and develop the system, which allows neuropsychologists to configure and schedule rehabilitation sessions, consisting of set of personalized computerized cognitive exercises grounded on neuroscience and plasticity principles. It provides remote continuous monitoring of patient's performance, by an asynchronous communication strategy. An automatic knowledge extraction method has been used to implement a decision support system, improving treatment customization. GNPT has been implemented in 27 rehabilitation centers and in 83 patients' homes, facilitating the access to the treatment. In total, 1660 patients have been treated. Usability and cost analysis methodologies have been applied to measure the efficiency in real clinical environments. The usability evaluation reveals a system usability score higher than 70 for all target users. The cost efficiency study results show a relation of 1-20 compared to face-to-face rehabilitation. GNPT enables brain-damaged patients to continue and further extend rehabilitation beyond the hospital, improving the efficiency of the rehabilitation process. It allows customized therapeutic plans, providing information to further development of clinical practice guidelines.
Resumo:
El uso de técnicas para la monitorización del movimiento humano generalmente permite a los investigadores analizar la cinemática y especialmente las capacidades motoras en aquellas actividades de la vida cotidiana que persiguen un objetivo concreto como pueden ser la preparación de bebidas y comida, e incluso en tareas de aseo. Adicionalmente, la evaluación del movimiento y el comportamiento humanos en el campo de la rehabilitación cognitiva es esencial para profundizar en las dificultades que algunas personas encuentran en la ejecución de actividades diarias después de accidentes cerebro-vasculares. Estas dificultades están principalmente asociadas a la realización de pasos secuenciales y al reconocimiento del uso de herramientas y objetos. La interpretación de los datos sobre la actitud de este tipo de pacientes para reconocer y determinar el nivel de éxito en la ejecución de las acciones, y para ampliar el conocimiento en las enfermedades cerebrales, sus consecuencias y severidad, depende totalmente de los dispositivos usados para la captura de esos datos y de la calidad de los mismos. Más aún, existe una necesidad real de mejorar las técnicas actuales de rehabilitación cognitiva contribuyendo al diseño de sistemas automáticos para crear una especie de terapeuta virtual que asegure una vida más independiente de estos pacientes y reduzca la carga de trabajo de los terapeutas. Con este objetivo, el uso de sensores y dispositivos para obtener datos en tiempo real de la ejecución y estado de la tarea de rehabilitación es esencial para también contribuir al diseño y entrenamiento de futuros algoritmos que pudieran reconocer errores automáticamente para informar al paciente acerca de ellos mediante distintos tipos de pistas como pueden ser imágenes, mensajes auditivos o incluso videos. La tecnología y soluciones existentes en este campo no ofrecen una manera totalmente robusta y efectiva para obtener datos en tiempo real, por un lado, porque pueden influir en el movimiento del propio paciente en caso de las plataformas basadas en el uso de marcadores que necesitan sensores pegados en la piel; y por otro lado, debido a la complejidad o alto coste de implantación lo que hace difícil pensar en la idea de instalar un sistema en el hospital o incluso en la casa del paciente. Esta tesis presenta la investigación realizada en el campo de la monitorización del movimiento de pacientes para proporcionar un paso adelante en términos de detección, seguimiento y reconocimiento del comportamiento de manos, gestos y cara mediante una manera no invasiva la cual puede mejorar la técnicas actuales de rehabilitación cognitiva para la adquisición en tiempo real de datos sobre el comportamiento del paciente y la ejecución de la tarea. Para entender la importancia del marco de esta tesis, inicialmente se presenta un resumen de las principales enfermedades cognitivas y se introducen las consecuencias que tienen en la ejecución de tareas de la vida diaria. Más aún, se investiga sobre las metodologías actuales de rehabilitación cognitiva. Teniendo en cuenta que las manos son la principal parte del cuerpo para la ejecución de tareas manuales de la vida cotidiana, también se resumen las tecnologías existentes para la captura de movimiento de manos. Una de las principales contribuciones de esta tesis está relacionada con el diseño y evaluación de una solución no invasiva para detectar y seguir las manos durante la ejecución de tareas manuales de la vida cotidiana que a su vez involucran la manipulación de objetos. Esta solución la cual no necesita marcadores adicionales y está basada en una cámara de profundidad de bajo coste, es robusta, precisa y fácil de instalar. Otra contribución presentada se centra en el reconocimiento de gestos para detectar el agarre de objetos basado en un sensor infrarrojo de última generación, y también complementado con una cámara de profundidad. Esta nueva técnica, y también no invasiva, sincroniza ambos sensores para seguir objetos específicos además de reconocer eventos concretos relacionados con tareas de aseo. Más aún, se realiza una evaluación preliminar del reconocimiento de expresiones faciales para analizar si es adecuado para el reconocimiento del estado de ánimo durante la tarea. Por su parte, todos los componentes y algoritmos desarrollados son integrados en un prototipo simple para ser usado como plataforma de monitorización. Se realiza una evaluación técnica del funcionamiento de cada dispositivo para analizar si es adecuada para adquirir datos en tiempo real durante la ejecución de tareas cotidianas reales. Finalmente, se estudia la interacción con pacientes reales para obtener información del nivel de usabilidad del prototipo. Dicha información es esencial y útil para considerar una rehabilitación cognitiva basada en la idea de instalación del sistema en la propia casa del paciente al igual que en el hospital correspondiente. ABSTRACT The use of human motion monitoring techniques usually let researchers to analyse kinematics, especially in motor strategies for goal-oriented activities of daily living, such as the preparation of drinks and food, and even grooming tasks. Additionally, the evaluation of human movements and behaviour in the field of cognitive rehabilitation is essential to deep into the difficulties some people find in common activities after stroke. This difficulties are mainly associated with sequence actions and the recognition of tools usage. The interpretation of attitude data of this kind of patients in order to recognize and determine the level of success of the execution of actions, and to broaden the knowledge in brain diseases, consequences and severity, depends totally on the devices used for the capture of that data and the quality of it. Moreover, there is a real need of improving the current cognitive rehabilitation techniques by contributing to the design of automatic systems to create a kind of virtual therapist for the improvement of the independent life of these stroke patients and to reduce the workload of the occupational therapists currently in charge of them. For this purpose, the use of sensors and devices to obtain real time data of the execution and state of the rehabilitation task is essential to also contribute to the design and training of future smart algorithms which may recognise errors to automatically provide multimodal feedback through different types of cues such as still images, auditory messages or even videos. The technology and solutions currently adopted in the field don't offer a totally robust and effective way for obtaining real time data, on the one hand, because they may influence the patient's movement in case of marker-based platforms which need sensors attached to the skin; and on the other hand, because of the complexity or high cost of implementation, which make difficult the idea of installing a system at the hospital or even patient's home. This thesis presents the research done in the field of user monitoring to provide a step forward in terms of detection, tracking and recognition of hand movements, gestures and face via a non-invasive way which could improve current techniques for cognitive rehabilitation for real time data acquisition of patient's behaviour and execution of the task. In order to understand the importance of the scope of the thesis, initially, a summary of the main cognitive diseases that require for rehabilitation and an introduction of the consequences on the execution of daily tasks are presented. Moreover, research is done about the actual methodology to provide cognitive rehabilitation. Considering that the main body members involved in the completion of a handmade daily task are the hands, the current technologies for human hands movements capture are also highlighted. One of the main contributions of this thesis is related to the design and evaluation of a non-invasive approach to detect and track user's hands during the execution of handmade activities of daily living which involve the manipulation of objects. This approach does not need the inclusion of any additional markers. In addition, it is only based on a low-cost depth camera, it is robust, accurate and easy to install. Another contribution presented is focused on the hand gesture recognition for detecting object grasping based on a brand new infrared sensor, and also complemented with a depth camera. This new, and also non-invasive, solution which synchronizes both sensors to track specific tools as well as recognize specific events related to grooming is evaluated. Moreover, a preliminary assessment of the recognition of facial expressions is carried out to analyse if it is adequate for recognizing mood during the execution of task. Meanwhile, all the corresponding hardware and software developed are integrated in a simple prototype with the purpose of being used as a platform for monitoring the execution of the rehabilitation task. Technical evaluation of the performance of each device is carried out in order to analyze its suitability to acquire real time data during the execution of real daily tasks. Finally, a kind of healthcare evaluation is also presented to obtain feedback about the usability of the system proposed paying special attention to the interaction with real users and stroke patients. This feedback is quite useful to consider the idea of a home-based cognitive rehabilitation as well as a possible hospital installation of the prototype.