3 resultados para CLINICIAN

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traumatic Brain Injury -TBI- -1- is defined as an acute event that causes certain damage to areas of the brain. TBI may result in a significant impairment of an individuals physical, cognitive and psychosocial functioning. The main consequence of TBI is a dramatic change in the individuals daily life involving a profound disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges of TBI Neuroimaging is to develop robust automated image analysis methods to detect signatures of TBI, such as: hyper-intensity areas, changes in image contrast and in brain shape. The final goal of this research is to develop a method to identify the altered brain structures by automatically detecting landmarks on the image where signal changes and to provide comprehensive information to the clinician about them. These landmarks identify injured structures by co-registering the patient?s image with an atlas where landmarks have been previously detected. The research work has been initiated by identifying brain structures on healthy subjects to validate the proposed method. Later, this method will be used to identify modified structures on TBI imaging studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Daño Cerebral (DC) se refiere a cualquier lesión producida en el cerebro y que afecta a su funcionalidad. Se ha convertido en una de las principales causas de discapacidad neurológica de las sociedades desarrolladas. Hasta la más sencilla de las actividades y acciones que realizamos en nuestro día a día involucran a los procesos cognitivos. Por ello, la alteración de las funciones cognitivas como consecuencia del DC, limita no sólo la calidad de vida del paciente sino también la de las persona de su entorno. La rehabilitación cognitiva trata de aumentar la autonomía y calidad de vida del paciente minimizando o compensando los desórdenes funciones causados por el episodio de DC. La plasticidad cerebral es una propiedad intrínseca al sistema nervioso humano por la que en función a la experiencia se crean nuevos patrones de conectividad. El propósito de la neurorrehabilitación es precisamente modular esta propiedad intrínseca a partir de ejercicios específicos, los cuales podrían derivar en la recuperación parcial o total de las funciones afectadas. La incorporación de la tecnología a las terapias de rehabilitación ha permitido desarrollar nuevas metodologías de trabajo. Esto ha ayudado a hacer frente a las dificultades de la rehabilitación que los procesos tradicionales no logran abarcar. A pesar del gran avance realizado en los Ãoltimos años, todavía existen debilidades en el proceso de rehabilitación; por ejemplo, la trasferencia a la vida real de las habilidades logradas durante la terapia de rehabilitación, así como su generalización a otras actividades cotidianas. Los entornos virtuales pueden reproducir situaciones cotidianas. Permiten simular, de forma controlada, los requisitos conductuales que encontramos en la vida real. En un contexto terapéutico, puede ser utilizado por el neuropsicólogo para corregir en el paciente comportamientos patológicos no deseados, realizar intervenciones terapéuticas sobre Actividades de Vida Diaria que estimulen conductas adaptativas. A pesar de que las tecnologías actuales tienen potencial suficiente para aportar nuevos beneficios al proceso de rehabilitación, existe cierta reticencia a su incorporación a la clínica diaria. A día de hoy, no se ha podido demostrar que su uso aporte una mejorar significativa con respecto a otro tipo de intervención; en otras palabras, no existe evidencia científica de la eficacia del uso de entornos virtuales interactivos en rehabilitación. En este contexto, la presente Tesis Doctoral trata de abordar los aspectos que mantienen a los entornos virtuales interactivos al margen de la rutina clínica diaria. Se estudian las diferentes etapas del proceso de rehabilitación cognitiva relacionado con la integración y uso de estos entornos: diseño de las actividades, su implementación en el entorno virtual, y finalmente la ejecución por el paciente y análisis de los respectivos datos. Por tanto, los bloques en los que queda dividido el trabajo de investigación expuesto en esta memoria son: 1. Diseño de las AVD. La definición y configuración de los elementos que componen la AVD permite al terapeuta diseñar estrategias de intervención terapéutica para actuar sobre el comportamiento del paciente durante la ejecución de la actividad. En esta parte de la tesis se pretende formalizar el diseño de las AVD de tal forma que el terapeuta pueda explotar el potencial tecnológico de los entornos virtuales interactivos abstrayéndose de la complejidad implícita a la tecnología. Para hacer viable este planteamiento se propone una metodología que permita modelar la definición de las AVD, representar el conocimiento implícito en ellas, y asistir al neuropsicólogo durante el proceso de diseño de la intervención clínica. 2. Entorno virtual interactivo. El gran avance tecnológico producido durante los Ãoltimos años permite reproducir AVD interactivas en un contexto de uso clínico. El objetivo perseguido en esta parte de la Tesis es el de extraer las características potenciales de esta solución tecnológica y aplicarla a las necesidades y requisitos de la rehabilitación cognitiva. Se propone el uso de la tecnología de Vídeo Interactivo para el desarrollo de estos entornos virtuales. Para la evaluación de la misma se realiza un estudio experimental dividido en dos fases con la participación de sujetos sanos y pacientes, donde se valora su idoneidad para ser utilizado en terapias de rehabilitación cognitiva. 3. Monitorización de las AVD. El uso de estos entornos virtuales interactivos expone al paciente ante una gran cantidad de estímulos e interacciones. Este hecho requiere de instrumentos de monitorización avanzado que aporten al terapeuta información objetiva sobre el comportamiento del paciente, lo que le podría permitir por ejemplo evaluar la eficacia del tratamiento. En este apartado se propone el uso de métricas basadas en la atención visual y la interacción con el entorno para conocer datos sobre el comportamiento del paciente durante la AVD. Se desarrolla un sistema de monitorización integrado con el entorno virtual que ofrece los instrumentos necesarios para la evaluación de estas métricas para su uso clínico. La metodología propuesta ha permitido diseñar una AVD basada en la definición de intervenciones terapéuticas. Posteriormente esta AVD has sido implementada mediante la tecnología de vídeo interactivo, creando así el prototipo de un entorno virtual para ser utilizado por pacientes con déficit cognitivo. Los resultados del estudio experimental mediante el cual ha sido evaluado demuestran la robustez y usabilidad del sistema, así como su capacidad para intervenir sobre el comportamiento del paciente. El sistema monitorización que ha sido integrado con el entorno virtual aporta datos objetivos sobre el comportamiento del paciente durante la ejecución de la actividad. Los resultados obtenidos permiten contrastar las hipótesis de investigación planteadas en la Tesis Doctoral, aportando soluciones que pueden ayudar a la integración de los entornos virtuales interactivos en la rutina clínica. Esto abre una nueva vía de investigación y desarrollo que podría suponer un gran progreso y mejora en los procesos de neurorrehabilitación cognitiva en daño cerebral. ABSTRACT Brain injury (BI) refers to medical conditions that occur in the brain, altering its function. It becomes one of the main neurological disabilities in the developed society. Cognitive processes determine individual performance in Activities of Daily Living (ADL), thus, the cognitive disorders after BI result in a loss of autonomy and independence, affecting the patient’s quality of life. Cognitive rehabilitation seeks to increase patients’ autonomy and quality of life minimizing or compensating functional disorders showed by BI patients. Brain plasticity is an intrinsic property of the human nervous system whereby its structure is changed depending on experience. Neurorehabilitation pursuits a precise modulation of this intrinsic property, based on specific exercises to induce functional changes, which could result in partial or total recovery of the affected functions. The new methodologies that can be approached by applying technologies to the rehabilitation process, permit to deal with the difficulties which are out of the scope of the traditional rehabilitation. Despite this huge breakthrough, there are still weaknesses in the rehabilitation process, such as the transferring to the real life those skills reached along the therapy, and its generalization to others daily activities. Virtual environments reproduce daily situations. Behavioural requirements which are similar to those we perceive in real life, are simulated in a controlled way. In these virtual environments the therapist is allowed to interact with patients without even being present, inhibiting unsuitable behaviour patterns, stimulating correct answers throughout the simulation and enhancing stimuli with supplementary information when necessary. Despite the benefits which could be brought to the cognitive rehabilitation by applying the potential of the current technologies, there are barriers for widespread use of interactive virtual environments in clinical routine. At present, the evidence that these technologies bring a significant improvement to the cognitive therapies is limited. In other words, there is no evidence about the efficacy of using virtual environments in rehabilitation. In this context, this work aims to address those issues which keep the virtual environments out of the clinical routine. The stages of the cognitive rehabilitation process, which are related with the use and integration of these environments, are analysed: activities design, its implementation in the virtual environment, and the patient’s performance and the data analysis. Hence, the thesis is comprised of the main chapters that are listed below: 1. ADL Design.Definition and configuration of the elements which comprise the ADL allow the therapist to design intervention strategies to influence over the patient behaviour along the activity performance. This chapter aims to formalise the AVD design in order to help neuropsychologists to make use of the interactive virtual environments’ potential but isolating them from the complexity of the technology. With this purpose a new methodology is proposed as an instrument to model the ADL definition, to manage its implied knowledge and to assist the clinician along the design process of the therapeutic intervention. 2. Interactive virtual environment. Continuous advancements make the technology feasible for re-creating rehabilitation therapies based on ADL. The goal of this stage is to analyse the main features of virtual environments in order to apply them according to the cognitive rehabilitation’s requirements. The interactive video is proposed as the technology to develop virtual environments. Experimental study is carried out to assess the suitability of the interactive video to be used by cognitive rehabilitation. 3. ADL monitoring system. This kind of virtual environments bring patients in front lots of stimuli and interactions. Thus, advanced monitoring instruments are needed to provide therapist with objective information about patient’s behaviour. This thesis chapter propose the use of metrics rely on visual patients’ visual attention and their interactions with the environment. A monitoring system has been developed and integrated with the interactive video-based virtual environment, providing neuropsychologist with the instruments to evaluate the clinical force of this metrics. Therapeutic interventions-based ADL has been designed by using the proposed methodology. Interactive video technology has been used to develop the ADL, resulting in a virtual environment prototype to be use by patients who suffer a cognitive deficits. An experimental study has been performed to evaluate the virtual environment, whose overcomes show the usability and solidity of the system, and also its capacity to have influence over patient’s behaviour. The monitoring system, which has been embedded in the virtual environment, provides objective information about patients’ behaviour along their activity performance. Research hypothesis of the Thesis are proven by the obtained results. They could help to incorporate the interactive virtual environments in the clinical routine. This may be a significant step forward to enhance the cognitive neurorehabilitation processes in brain injury.