2 resultados para CHLC MFR
em Universidad Politécnica de Madrid
Resumo:
El presente trabajo trata de elementos reforzados con barras de armadura y Fibras Metálicas Recicladas (FMR). El objetivo principal es mejorar el comportamiento a fisuración de elementos sometidos a flexión pura y a flexión compuesta, aumentando en consecuencia las prestaciones en servicio de aquellas estructuras con requerimientos estrictos con respecto al control de fisuración. Entre éstas últimas se encuentran las estructuras integrales, es decir aquellas estructuras sin juntas (puentes o edificios), sometidas a cargas gravitatorias y deformaciones impuestas en los elementos horizontales debidas a retracción, fluencia y temperatura. Las FMR son obtenidas a partir de los neumáticos fuera de uso, y puesto que el procedimiento de reciclado se centra en el caucho en vez que en el acero, su forma es aleatoria y con longitud variable. A pesar de que la eficacia del fibrorefuerzo mediante FMR ha sido demostrada en investigaciones anteriores, la innovación que representa este trabajo consiste en proponer la acción combinada de barras convencionales y FMR en la mejora del comportamiento a fisuración. El objetivo es por tanto mejorar la sostenibilidad del proyecto de la estructura en HA al utilizar materiales reciclados por un lado, y aumentando por el otro la durabilidad. En primer lugar, se presenta el estado del arte con respecto a la fisuración en elementos de HA, que sucesivamente se amplía a elementos reforzados con barras y fibras. Asimismo, se resume el método simplificado para el análisis de columnas de estructuras sin juntas ya propuesto por Pérez et al., con particular énfasis en aquellos aspectos que son incompatibles con la acción de las fibras a nivel seccional. A continuación, se presenta un modelo para describir la deformabilidad seccional y la fisuración en elementos en HA, que luego se amplía a aquellos elementos reforzados con barras y fibras, teniendo en cuenta también los efectos debidos a la retracción (tension stiffening negativo). El modelo es luego empleado para ampliar el método simplificado para el análisis de columnas. La aportación consiste por tanto en contar con una metodología amplia de análisis para este tipo de elementos. Seguidamente, se presenta la campaña experimental preliminar que ha involucrado vigas a escala reducida sometidas a flexión simple, con el objetivo de validar la eficiencia y la usabilidad en el hormigón de las FMR de dos diferentes tipos, y su comportamiento con respecto a fibras de acero comerciales. Se describe a continuación la campaña principal, consistente en ensayos sobre ocho vigas en flexión simple a escala 1:1 (variando contenido en FRM, Ø/s,eff y recubrimiento) y doce columnas a flexión compuesta (variando contenido en FMR, Ø/s,eff y nivel de fuerza axil). Los resultados obtenidos en la campaña principal son presentados y comentados, resaltando las mejoras obtenidas en el comportamiento a fisuración de las vigas y columnas, y la rigidez estructural de las columnas. Estos resultados se comparan con las predicciones del modelo propuesto. Los principales parámetros estudiados para describir la fisuración y el comportamiento seccional de las vigas son: la separación entre fisuras, el alargamiento medio de las armaduras y la abertura de fisura, mientras que en los ensayos de las columnas se ha contrastado las leyes momento/curvatura, la tensión en las barras de armadura y la abertura de fisura en el empotramiento en la base. La comparación muestra un buen acuerdo entre las predicciones y los resultados experimentales. Asimismo, se nota la mejora en el comportamiento a fisuración debido a la incorporación de FMR en aquellos elementos con cuantías de armadura bajas en flexión simple, en elementos con axiles bajos y para el control de la fisuración en elementos con grandes recubrimientos, siendo por tanto resultados de inmediato impacto en la práctica ingenieril (diseño de losas, tanques, estructuras integrales, etc.). VIIIComo punto final, se presentan aplicaciones de las FMR en estructuras reales. Se discuten dos casos de elementos sometidos a flexión pura, en particular una viga simplemente apoyada y un tanque para el tratamiento de agua. En ambos casos la adicción de FMR al hormigón lleva a mejoras en el comportamiento a fisuración. Luego, utilizando el método simplificado para el análisis en servicio de columnas de estructuras sin juntas, se calcula la máxima longitud admisible en casos típicos de puentes y edificación. En particular, se demuestra que las limitaciones de la práctica ingenieril actual (sobre todo en edificación) pueden ser aumentadas considerando el comportamiento real de las columnas en HA. Finalmente, los mismos casos son modificados para considerar el uso de MFR, y se presentan las mejoras tanto en la máxima longitud admisible como en la abertura de fisura para una longitud y deformación impuesta. This work deals with elements reinforced with both rebars and Recycled Steel Fibres (RSFs). Its main objective is to improve cracking behaviour of elements subjected to pure bending and bending and axial force, resulting in better serviceability conditions for these structures demanding keen crack width control. Among these structures a particularly interesting type are the so-called integral structures, i.e. long jointless structures (bridges and buildings) subjected to gravitational loads and imposed deformations due to shrinkage, creep and temperature. RSFs are obtained from End of Life Tyres, and due to the recycling process that is focused on the rubber rather than on the steel they come out crooked and with variable length. Although the effectiveness of RSFs had already been proven by previous research, the innovation of this work consists in the proposing the combined action of conventional rebars and RSFs to improve cracking behaviour. Therefore, the objective is to improve the sustainability of RC structures by, on the one hand, using recycled materials, and on the other improving their durability. A state of the art on cracking in RC elements is firstly drawn. It is then expanded to elements reinforced with both rebars and fibres (R/FRC elements). Finally, the simplified method for analysis of columns of long jointless structures already proposed by Pérez et al. is resumed, with a special focus on the points that conflict when taking into account the action of fibres. Afterwards, a model to describe sectional deformability and cracking of R/FRC elements is presented, taking also into account the effect of shrinkage (negative tension stiffening). The model is then used to implement the simplified method for columns. The novelty represented by this is that a comprehensive methodology to analyse this type of elements is presented. A preliminary experimental campaign consisting in small beams subjected to pure bending is described, with the objective of validating the effectiveness and usability in concrete of RSFs of two different types, and their behaviour when compared with commercial steel fibres. With the results and lessons learnt from this campaign in mind, the main experimental campaign is then described, consisting in cracking tests of eight unscaled beams in pure bending (varying RSF content, Ø/s,eff and concrete cover) and twelve columns subjected to imposed displacement and axial force (varying RSF content, Ø/s,eff and squashing load ratio). The results obtained from the main campaign are presented and discussed, with particular focus on the improvement in cracking behaviour for the beams and columns, and structural stiffness for the columns. They are then compared with the proposed model. The main parameters studied to describe cracking and sectional behaviours of the beam tests are crack spacing, mean steel strain and crack width, while for the column tests these were moment/curvature, stress in rebars and crack with at column embedment. The comparison showed satisfactory agreement between experimental results and model predictions. Moreover, it is pointed out the improvement in cracking behaviour due to the addition of RSF for elements with low reinforcement ratios, elements with low squashing load ratios and for crack width control of elements with large concrete covers, thus representing results with a immediate impact in engineering practice (slab design, tanks, integral structures, etc.). Applications of RSF to actual structures are finally presented. Two cases of elements in pure bending are presented, namely a simple supported beam and a water treatment tank. In both cases the addition of RSF to concrete leads to improvements in cracking behaviour. Then, using the simplified model for the serviceability analysis of columns of jointless structures, the maximum achievable jointless length of typical cases of a bridge and building is obtained. In XIIparticular, it is shown how the limitations of current engineering practice (this is especially the case of buildings) can be increased by considering the actual behaviour of RC supports. Then, the same cases are modified considering the use of RSF, and the improvements both in maximum achievable length and in crack width for a given length and imposed strain at the deck/first floor are shown.
Resumo:
Photonic crystal fibers (PCF) have been selectively filled with a cholesteric liquid crystal (ChLC) with special interest in the blue phase (BP) of the liquid crystal. It has been observed thermal tuning of the guided light in the visible region. A dramatically enhance appears when the phase of the liquid crystal changes from cholesteric to blue phase I (BPI). When a thermal range of the blue phase I is achieved, no changes are observed while increasing temperature from BPI through BPII and to the isotropic phase.