34 resultados para CEREBRO
em Universidad Politécnica de Madrid
Resumo:
El siglo XXI parece será el siglo de las Ciencias de la Vida y más en concreto, el siglo en el que el principal reto al que se enfrentará la Ciencia será el de intentar acercarse un poco más a la comprensión del cerebro humano. La Fotónica no debe quedarse en los terrenos en los que se ha movido con relativa comodidad hasta ahora, sino que debe aportar lo que pueda a ese nuevo camino que se presenta. Las armas de las que dispone son mucho más potentes de lo que pensamos. Solo es necesario saber que existen y saber manejarlas.
Resumo:
El Cerebro Escuadrado. Sobre el ángulo recto en arquitectura = The Brain is Square
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
Abstract The creation of atlases, or digital models where information from different subjects can be combined, is a field of increasing interest in biomedical imaging. When a single image does not contain enough information to appropriately describe the organism under study, it is then necessary to acquire images of several individuals, each of them containing complementary data with respect to the rest of the components in the cohort. This approach allows creating digital prototypes, ranging from anatomical atlases of human patients and organs, obtained for instance from Magnetic Resonance Imaging, to gene expression cartographies of embryo development, typically achieved from Light Microscopy. Within such context, in this PhD Thesis we propose, develop and validate new dedicated image processing methodologies that, based on image registration techniques, bring information from multiple individuals into alignment within a single digital atlas model. We also elaborate a dedicated software visualization platform to explore the resulting wealth of multi-dimensional data and novel analysis algo-rithms to automatically mine the generated resource in search of bio¬logical insights. In particular, this work focuses on gene expression data from developing zebrafish embryos imaged at the cellular resolution level with Two-Photon Laser Scanning Microscopy. Disposing of quantitative measurements relating multiple gene expressions to cell position and their evolution in time is a fundamental prerequisite to understand embryogenesis multi-scale processes. However, the number of gene expressions that can be simultaneously stained in one acquisition is limited due to optical and labeling constraints. These limitations motivate the implementation of atlasing strategies that can recreate a virtual gene expression multiplex. The developed computational tools have been tested in two different scenarios. The first one is the early zebrafish embryogenesis where the resulting atlas constitutes a link between the phenotype and the genotype at the cellular level. The second one is the late zebrafish brain where the resulting atlas allows studies relating gene expression to brain regionalization and neurogenesis. The proposed computational frameworks have been adapted to the requirements of both scenarios, such as the integration of partial views of the embryo into a whole embryo model with cellular resolution or the registration of anatom¬ical traits with deformable transformation models non-dependent on any specific labeling. The software implementation of the atlas generation tool (Match-IT) and the visualization platform (Atlas-IT) together with the gene expression atlas resources developed in this Thesis are to be made freely available to the scientific community. Lastly, a novel proof-of-concept experiment integrates for the first time 3D gene expression atlas resources with cell lineages extracted from live embryos, opening up the door to correlate genetic and cellular spatio-temporal dynamics. La creación de atlas, o modelos digitales, donde la información de distintos sujetos puede ser combinada, es un campo de creciente interés en imagen biomédica. Cuando una sola imagen no contiene suficientes datos como para describir apropiadamente el organismo objeto de estudio, se hace necesario adquirir imágenes de varios individuos, cada una de las cuales contiene información complementaria respecto al resto de componentes del grupo. De este modo, es posible crear prototipos digitales, que pueden ir desde atlas anatómicos de órganos y pacientes humanos, adquiridos por ejemplo mediante Resonancia Magnética, hasta cartografías de la expresión genética del desarrollo de embrionario, típicamente adquiridas mediante Microscopía Optica. Dentro de este contexto, en esta Tesis Doctoral se introducen, desarrollan y validan nuevos métodos de procesado de imagen que, basándose en técnicas de registro de imagen, son capaces de alinear imágenes y datos provenientes de múltiples individuos en un solo atlas digital. Además, se ha elaborado una plataforma de visualization específicamente diseñada para explorar la gran cantidad de datos, caracterizados por su multi-dimensionalidad, que resulta de estos métodos. Asimismo, se han propuesto novedosos algoritmos de análisis y minería de datos que permiten inspeccionar automáticamente los atlas generados en busca de conclusiones biológicas significativas. En particular, este trabajo se centra en datos de expresión genética del desarrollo embrionario del pez cebra, adquiridos mediante Microscopía dos fotones con resolución celular. Disponer de medidas cuantitativas que relacionen estas expresiones genéticas con las posiciones celulares y su evolución en el tiempo es un prerrequisito fundamental para comprender los procesos multi-escala característicos de la morfogénesis. Sin embargo, el número de expresiones genéticos que pueden ser simultáneamente etiquetados en una sola adquisición es reducido debido a limitaciones tanto ópticas como del etiquetado. Estas limitaciones requieren la implementación de estrategias de creación de atlas que puedan recrear un multiplexado virtual de expresiones genéticas. Las herramientas computacionales desarrolladas han sido validadas en dos escenarios distintos. El primer escenario es el desarrollo embrionario temprano del pez cebra, donde el atlas resultante permite constituir un vínculo, a nivel celular, entre el fenotipo y el genotipo de este organismo modelo. El segundo escenario corresponde a estadios tardíos del desarrollo del cerebro del pez cebra, donde el atlas resultante permite relacionar expresiones genéticas con la regionalización del cerebro y la formación de neuronas. La plataforma computacional desarrollada ha sido adaptada a los requisitos y retos planteados en ambos escenarios, como la integración, a resolución celular, de vistas parciales dentro de un modelo consistente en un embrión completo, o el alineamiento entre estructuras de referencia anatómica equivalentes, logrado mediante el uso de modelos de transformación deformables que no requieren ningún marcador específico. Está previsto poner a disposición de la comunidad científica tanto la herramienta de generación de atlas (Match-IT), como su plataforma de visualización (Atlas-IT), así como las bases de datos de expresión genética creadas a partir de estas herramientas. Por último, dentro de la presente Tesis Doctoral, se ha incluido una prueba conceptual innovadora que permite integrar los mencionados atlas de expresión genética tridimensionales dentro del linaje celular extraído de una adquisición in vivo de un embrión. Esta prueba conceptual abre la puerta a la posibilidad de correlar, por primera vez, las dinámicas espacio-temporales de genes y células.
Resumo:
Desde hace mucho tiempo, el hombre se ha preocupado por los fenómenos que rigen el movimiento humano. Así Aristóteles (384-322 a. J.C.) poseía conocimientos notables sobre el centro de gravedad, las leyes del movimiento y de las palancas, siendo el primero en describir el complejo proceso de la marcha. A este sabio le siguieron muchos otros: Arquímedes (287-212 a. J.C.)- Ga leno (131-201 a.J.C.) Leonardo Da Vinci (1452-1519), que describió la mecánica del cuerpo en posición erecta, en la marcha y en el salto. Galileo Galilei (1564-1643) proporcionó empuje al estudio de los fenómenos mecánicos en términos matemáticos, creando las bases para la biomecánica. Alfonso Borelli (1608-1679), considerado por algunos autores como el padre de la moderna biomecánica. Aseguraba que los músculos funcionan de acuerdo con principios matemáticos. Nicolas Andry (1658-1742), creador de la ciencia ortopédica. Isaac Newton, que estableció las bases de la dinámica moderna con la enunciación de sus leyes mecánicas todavía hoy vigentes. E.J. Marey (1830-1904), afirmaba que el movimiento es la más importante de las funciones humanas, y describió métodos fotográficos para la investigación biológica. c.w. Braune (1831-1892), y Otto Fischer (1861-1917), describieron un método experimental para determinar el centro de gravedad. Harold Edgerton, inventor del estroboscopio electrónico de aplicación en el análisis fotográfico del movimiento. Gideon Ariel, una de las máximas autoridades en la biomecánica del deporte actual. ••••••• oooOooo ••••••• En lo que respecta al ámbito deportivo, en los últimos años estamos asistiendo a una gran mejora del rendimiento. Esto es debido en gran parte a un mayor apoyo científico en el proceso de entrenamiento, tanto en lo que se refiere a los métodos para desarrollar la condición física, como en lo concerniente a la perfección de la técnica deportiva, es decir, el aprovechamiento más eficaz de las leyes mecánicas que intervienen en el movimiento deportivo. Según P. Rasch y R. Burke, la biomecánica se ocupa de la investigación del movimiento humano por medio de los conceptos de la física clásica y las disciplinas afines en el arte práctico de la ingeniería. Junto con la anatomía, biofísica, bioquímica, fisiología, psicología y cibernética, y estrechamente relacionada con ellas, la biomecánica, conforma las bases de la metodología deportiva. (Hochmuth) Entre los objetivos específicos de la biomecánica está la investigación dirigida a encontrar una técnica deportiva más eficaz. Actualmente, el perfeccionamiento de la técnica se realiza cada vez más apoyándose en los trabajos de análisis biomecánico. Efectivamente, esto tiene su razón de ser, pues hay detalles en el curso del ~~ movimiento que escapan a la simple observación visual por parte del entrenador. Entre dos lanzamientos de distinta longitud, en muchas ocasiones no se pueden percibir ninguna o como mucho sólo pequeñas diferencias. De ahí la necesidad de las investigaciones basadas en el análisis biomecánico, de cuyos resultados obtendrá el entrenador la información que precisa para realizar las modificaciones oportunas en cuanto a la técnica deportiva empleada por su atleta se refiere. Para el análisis biomecánico se considera el cuerpo humano como un conjunto de segmentos que forman un sistema de eslabones sometido a las leyes físicas. Estos segmentos son: la cabeza, el tronco, los brazos, los antebrazos, las manos, los muslos, las piernas y los pies. A través de estos segmentos y articulaciones se transmiten las aceleraciones y desaceleraciones para alcanzar la velocidad deseada en las porciones terminales y en el sistema propioceptivo que tiene su centro en el cerebro. De todo esto podemos deducir la práctica imposibilidad de descubrir un error en el curso del movimiento por la sola observación visual del entrenador por experto que este sea (Zanon). El aspecto biológico de la biomecánica no se conoce tanto como el aspecto mecánico, ya que este campo es mucho más complejo y se necesitan aparatos de medición muy precisos. Entre los objetivos que me he planteado al efectuar este trabajo están los siguientes: - Análisis biomecánico de uno de los mejores lanzadores de martillo de España. - Qué problemas surgen en el análisis biomecánico tridimensional. Cómo llevar a cabo este tipo de investigación con un material elemental, ya que no disponemos de otro. Ofrecer al técnico deportivo los procedimientos matemáticos del cálculo necesarios. En definitiva ofrecer una pequeña ayuda al entrenador, en su búsqueda de soluciones para el perfeccionamiento de la técnica deportiva.
Resumo:
La evolución de la maquinaria agrícola en el siglo XX ha sido tan espectacular que, de los tres grandes avances habidos a lo largo de la historia de la maquinaria agrícola, dos de ellos podemos considerar que marcan el comienzo y el fin del siglo XX. El primer avance fundamental se dio el día en que el hombre que removía la tierra golpeándola con una herramienta tipo azada decidió avanzar con ella introducida en el suelo venciendo la fuerza de tiro. Nació así el arado en un tiempo indeterminado de la prehistoria. Esa primera máquina y las pocas que en muchos siglos después se diseñaron para trabajar la tierra estaban accionadas por esfuerzo muscular, ya fuera el del hombre o de los animales de tiro. El siguiente paso decisivo, que libra al hombre de la necesidad de contar con fuerza muscular para trabajar el campo, se dio al aplicar a la agricultura la energía generada por motores que consumen combustibles. Aunque a lo largo del siglo XIX se construyeron máquinas de vapor estacionarias denominadas locomóviles que, mediante un juego de cables y poleas, conseguían tirar de los arados, su uso fue escaso y los agricultores no se libraron de seguir con su collera de muías o yunta de bueyes. Sin embargo, la construcción del primer tractor con motor de combustión interna, debida a Froelich en 1892, marca el inicio de la actual tractorización. A partir de ese momento, tanto el tamaño de las máquinas como el de la superficie trabajada por un agricultor pueden crecer, porque es la energía desarrollada por un motor la que realiza los esfuerzos necesarios. Esta fecha de 1892 podemos considerarla el inicio del siglo XX en maquinaria agrícola. Por último, en época reciente estamos asistiendo al empleo de dispositivos electrónicos e informáticos en las máquinas, los cuales miden diversas variables relativas al trabajo que desarrolla, guardan la información en registros e, incluso, deciden cómo debe comandarse la máquina. No sólo estamos liberados de realizar esfuerzos, sino también de mantener toda nuestra atención en el trabajo y tomar decisiones en función de las características del terreno, cultivo, etc. Estas técnicas, que a nivel de investigación y prototipo existen desde los años 90, marcan el inicio del siglo XXI en el que es de esperar que se difundan. Por tanto, ya tenemos encuadrado el siglo XX como el periodo comprendido desde que el esfuerzo para trabajar la tierra deja de ser muscular hasta que el cerebro que toma las decisiones podrá dejar de ser humano.
Resumo:
Alan Turing y la Neurociencia
Resumo:
En el presente trabajo fin de máster se ha concebido, diseñado e utilizado una interfaz háptica, adecuada para ser utilizada como dispositivo de sustitución sensorial, la cual hemos llamado retina táctil. Por cuanto trata de proporcionar información propia del sentido de la vista a través del sentido del tacto. Durante este trabajo, que fue desarrollado en el grupo de robótica y cibernética CAR UPM-CSIC, se ha trabajado en estrecha colaboración con el departamento de la facultad de psicología de la universidad autónoma de Madrid, los cuales han definido las bases de la información de alto orden, como podrían ser, gradientes de intensidades de vibración, mediante las cuales el individuo llega a tener una mejor comprensión del ambiente. El proyecto maneja teorías psicológicas recientes, como las teorías ecológicas y dinámicas que entienden que la percepción se basa en variables informacionales de alto orden. Ejemplos de tales variables son el flujo óptico, gradientes de movimiento, gradientes de intensidades, cambios en gradientes, etc. Sorprendentemente, nuestra percepción visual es mucho más sensible a variables de alto orden que a variables de bajo orden, lo cual descarta que variables de alto orden se infieran o calculen en base a variables de bajo orden. La hipótesis que maneja la teoría ecológica es que las variables de alto orden se detectan como unidades básicas, sin descomponerlas en variables de bajo orden. Imaginemos el caso de un objeto acercándose, intuitivamente pensaríamos que calculamos la distancia y la velocidad del objeto para determinar el momento en el cual este nos impactaría, ¿pero es este realmente el modo en el que actúa nuestro cerebro?, ¿no seremos capaces en determinar directamente el tiempo de contacto como una variable de alto orden presente en el entorno?, por ejemplo, determinar directamente la relación entre el tamaño del objeto y la tasa de crecimiento. También cabe preguntarse si todas estas suposiciones son válidas para estimulaciónes a través de los receptores táctiles en la piel. El dispositivo desarrollado está conformado por 13 módulos cada uno de los cuales maneja 6 tactores o vibradores, para hacer un total de 78 vibradores (ampliables al agregar módulos adicionales), cada uno de los tactores tiene 8mm de diámetro y proporciona información del flujo óptico asociado al entorno que rodea al usuario a través de información táctil, él mismo puede ser utilizado inalámbricamente a pesar de que el procesamiento de los datos se este realizando en una computadora de mesa, lo cual es muy útil al trabajar con ambientes virtuales. También se presenta la integración de la interfaz con el sistema operativo de robots ROS para usarlo en conjunto con las librerías que han sido desarrolladas para el control de la cámara Microsoft Kinect con la cual se puede obtener una matriz de distancias de puntos en el espacio, permitiendo de esta manera utilizar la interfaz en ambientes reales. Finalmente se realizaron experimentos para comprobar hipótesis sobre la variable de percepción del tiempo de contacto además de verificar el correcto funcionamiento del dispositivo de sustitución sensorial tanto en ambientes reales como en ambientes simulados así como comprobar hipótesis sobre la validéz del uso del flujo vibrotáctil para la determinación del tiempo de contacto.
Resumo:
En España hay más de 115.500 personas que padecen Parkinson. Esto la convierte en la segunda enfermedad neurodegenerativa más común, por detrás del Alzheimer. La mayoría de los enfermos se encuentran en edades comprendidas entre los 50 y los 80 años, lo que unido al incremento de la esperanza de vida hace que se prevea un incremento del número de enfermos de Parkinson en pocos años. El Parkinson es un desorden crónico y degenerativo que afecta a la parte del cerebro encargada del sistema motor, es decir, la encargada de coordinar la actividad, el tono muscular y los movimientos, así como a las capacidades cognitivas. Esta patología crónica, de momento, no tiene cura. A los pacientes se les aplican tratamientos farmacológicos para frenar la progresión de la enfermedad. Además, se aplican terapias adicionales como la fisioterapia, la logopedia, la musicoterapia, la estimulación cognitiva o la terapia ocupacional. El uso de las Tecnologías de la Información y Comunicaciones en el campo de la estimulación cognitiva permite que personas con deterioro cognitivo puedan realizar sesiones de estimulación desde su domicilio de forma remota, complementando las terapias individuales y/o grupales que haya indicado el terapeuta. Además, evita desplazamientos hasta el centro de atención, que en ocasiones pueden ser difíciles de efectuar por encontrarse en lugares alejados o por problemas de movilidad del afectado. Asimismo, el uso de este tipo tecnología permite que los resultados de los ejercicios realizados por los pacientes se puedan almacenar para que el terapeuta los pueda analizar en cualquier momento y de esta manera ir adecuando la terapia. Finalmente, la plataforma que se propone cuenta con el valor añadido de permitir la interactividad con los terapeutas y la posibilidad de adaptar los ejercicios a cada paciente, según las necesidades que presente cada uno. SUMMARY. In Spain, there are more than 115.500 people with Parkinson disease. Due to this, it is the second most common neurodegenerative disease, only behind Alzheimer's disease. Most patients have ages between 50 and 80 years of age, which together with the increase in life expectancy to provide an increase in the number of patients with Parkinson's in a few years. Most patients have aged between 50 and 80 years old, which together with the increase of life expectancy provide a growth in the number of people with Parkinson’s in a few years. Parkinson's is a chronic and degenerative disorder that affects the part of the brain responsible for the motor system, i.e., responsible for coordinating activity, muscle tone and movements, as well as cognitive abilities. Nowadays, this chronic pathology has no cure. Pharmacological treatments are applied to patients for slowing down the advance of this disease. In addition, there are additional therapies such as physiotherapy, speech therapy, music therapy, cognitive stimulation or occupational therapy. The use of the Information Technologies and Communications in the field of cognitive stimulation allows people with cognitive impairment may carry out stimulation sessions in their home remotely, complementing individual therapies or group therapies provided by the therapist. This minimizes trips to the attention center, which sometimes can be difficult due to they live in remote places or they are mobility-reduced people. In addition, the use of such technology allows that the results of the exercises personalized by patients can store so that the therapist can analyze them at any time and therefore he or she adapts the therapy. Finally, the proposed platform brings the added value of allowing interaction with the therapists and the possibility of adapting the exercises to each patient according to his or her needs.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
La utilización de simulaciones por ordenador en el campo de la neurociencia, ofrece una mejora radical en el método científico al proporcionar un medio en el que poder probar hipótesis sobre los complejos modelos biológicos. Hay que tener en cuenta que la calidad de las simulaciones es directamente proporcional a la calidad de los datos y a la exactitud en la abstracción matemática de los procesos biológicos. Las sinapsis son los contactos que permiten el intercambio de información entre neuronas. A través de ellas, las neuronas son capaces de formar circuitos que intervienen en las operaciones funcionales específicas de las distintas regiones del cerebro. Por tanto, puede considerarse a la sinapasis como la estructura elemental y la unidad funcional en la construcción de circuitos neuronales. La inmensa mayoría de las sinapsis del cerebro de los vertebrados son sinapsis químicas. En ellas el elemento presináptico es generalmente un terminal axónico, mientras que el elemento postsináptico puede ser un cuerpo neuronal, el segmento inicial del axón, un tronco dendrítico o una espina dendrítica. Las membranas de los elementos pre y postsináptico no entran en contacto, sino que están separadas por un pequeño espacio denominado hendidura sináptica. En una sinapsis química, el elemento presináptico libera una sustancia química, el neurotransmisor, que difunde por la hendidura sináptica y actúa sobre el elemento postsináptico. Desde un punto de vista operacional, una sinapsis convierte un impulso eléctrico que alcanza el elemento presináptico en una señal química, que a su vez provoca un fenómeno eléctrico en el lado postsináptico. Para que esto ocurra, el neurotransmisor liberado debe difundir por la hendidura sináptica e interactuar con receptores específicos presentes en la membrana postsináptica. Dependiendo del tipo de neurotransmisor utilizado y de los receptores implicados la sinapsis podrá ser excitatoria, si se estimula el elemento postsináptico, o inhibitoria si ocurre lo contrario.La transmisión sináptica ocurre a escala submicroscópica, lo que la hace inaccesible a la observación experimental directa. Sin embargo, tanto la difusión del neurotransmisor como su interacción con los receptores sinápticos pueden simularse dado que dependen de parámetros fisico-químicos conocidos. En este trabajo hemos elegido como objeto de estudio una sinapsis glutamatérgica (que usa glutamato como neurotransmisor excitatorio) debido a que es la sinapsis más común en la corteza cerebral. Si bien se conocen las propiedades de los diferentes tipos de receptores de glutamato, se desconoce la influencia que pueda tener en el comportamiento de la sinapsis la geometría de ésta, es decir, su forma y tamaño. Sabemos por estudios de microscopía electrónica que tanto la forma como el tamaño de las sinapsis son muy variables, y es precisamente esta variabilidad la que pretendemos simular, junto con otros parámetros como el número de receptores de neurotransmisor.
Resumo:
Discurso del Académico Martín Pereda en la sesión inaugural del año académico ante sus compañeros de la Real Academia de Ingeniería. En él, el autor esboza su interpretación de cómo nuestro cerebro interpreta algunas imágenes, y más en concreto las ilusiones visuales, cómo la Fotónica puede ayudarnos a interpretarlas y cómo su interpretación puede servirnos para entender algo de cómo funciona nuestro sistema visual. Quizás de todo ello podrán extraerse conceptos que ayuden a interpretar la realidad.
Resumo:
Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.
Resumo:
Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.
Resumo:
Estudiar los movimientos infantiles ha sido uno de los asuntos más antiguos de la psicología del desarrollo. La presencia en la palestra científica de los estudios de Esther Thelen supuso que la psicología revitalizara el estudio del desarrollo motor para darle carta de naturaleza en el contexto investigador llegándolo a considerar como el fundamento de la psicología del des arrollo. Sus investigaciones transformaron la forma de pensar en torno al proceso de cambio poniendo en duda la interpretación madurativa del mismo, las causas del desarrollo motor infantil no se encontraban únicamente en el cerebro, así a la idea aceptada de que existía una estrecha relación entre las regularidades en el comportamiento motor y los cambios madurativos en el cerebro.