2 resultados para CDS
em Universidad Politécnica de Madrid
Resumo:
Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64–65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 μs, rotational viscosities of the order of from 5000 to 3000 mN s m−2 and polarizations of the order of from 10 to 70 nC cm−2 were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.