40 resultados para CANOPY
em Universidad Politécnica de Madrid
Resumo:
In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.
Resumo:
The effect of location of fruit in canopies of hedgerow olive trees (Olea europaea L., cv. ‘Arbequina’) on quality of virgin oil was tested by analyzing oils extracted from different height layers and faces of 9 olive hedgerows (6 North-South oriented and 3 East-West). Although sensory attributes were not different other oil quality parameters may be significantly modified by fruit position. In some hedgerows, oils extracted from fruits harvested from higher layers exhibited significantly higher stability against oxidation, along with higher palmitic acid, linoleic acid and phenol contents, but lower oleic acid content. Oils extracted from fruits harvested from East and North facing hedgerows oriented North-South and East-West, respectively, exhibited higher oleic contents and lower saturated and polyunsaturated fatty acid contents. The mean phenol content of oils extracted from fruits from a North-South oriented hedgerow was significantly greater from one of the East-West oriented hedgerows. These findings may be relevant for the design of future olive hedgerows destined for olive oil production.
Resumo:
En este trabajo se recogieron muestras de aceituna procedente de distintas alturas de setos cultivados en diferentes condiciones para evaluar el efecto en la calidad del aceite.
Resumo:
The effect of location of fruit in canopies of hedgerow olive trees (Olea europaea L., cv. ‘Arbequina’) on quality of virgin oil was tested by analyzing oils extracted from different height layers and faces of nine olive hedgerows (6 North–South oriented and 3 East– West). Although sensory attributes were not different, other oil quality parameters may be significantly modified by fruit position. Oils extracted from fruits harvested from higher layers exhibited significantly higher stability against oxidation, along with higher palmitic acid, linoleic acid and phenol contents, but lower oleic acid content. Oils extracted from fruits harvested from East and North facing hedgerows oriented North–South and East–West, respectively, exhibited higher oleic contents and lower saturated and polyunsaturated fatty acid contents. The mean phenol content of oils extracted from fruits from a North–South oriented hedgerow was significantly greater from one of the East–West oriented hedgerows. These findings may be relevant for the design of future olive hedgerows destined for olive oil production.
Resumo:
tWatercore distribution inside apple fruit (block or radial), and its incidence (% of tissue) were relatedto the effect of solar radiation inside the canopy as measured by a set of low-cost irradiation sensors.221 samples were harvested in two seasons from the top and the bottom of the canopy and submittedto the non-invasive and non-destructive technique of magnetic resonance imaging (MRI) in order toobtain 20 inner tomography slices from each fruit and analyze the damaged areas using an interactive3D segmentation method. The number of fruit corresponding to each type of damage and the relevantpercentage were calculated and it was found that apples from the top of the tree were mainly of the radialtype (84%) and had more watercore (approx. 5% more) than apples from the bottom (65% radial). From theimage segmentation, the Euler number, a morphometric parameter, was extracted from the segmentedimages and related to the type of watercore symptoms. Apples with block watercore were grouped inEuler numbers between −400 and 400 with a small evolution. For apples with radial development, theEuler number was highly negative: up to −1439. Significant differences were also found regarding sugarcomposition, with higher fructose and total sugar contents in apples from the upper canopy, compared tothose in the lower canopy location. In the seasons studied (2011 and 2012), significantly higher sorbitoland lower sucrose and fructose contents were found in watercore-affected tissue compared to the healthytissue of affected apples and also compared to healthy apples.
Resumo:
In warm and dry climates, the use of porous systems should be required in order to allow a better leaf distribution inside the plant, causing more space in the clusters area and enhancing determined physiological processes so in the leaf (photosynthesis, v entilation, transpiration) as in berry (growth and maturation). Plant geometry indexes, yield and must composition have been studied in three different systems: sprawl with 12 shoots/m (S1); sprawl system with 18 shoots/m (S2) and vertical positioned syste m or VSP with 12 shoots/m (VSP1). Total leaf area increases as the crop load does, whoever surface area depends on to two factors: crop load and the training system (VSP vs. sprawl), which can provide differences in leaf exposure efficiencies. The main objective of this study was to validate digital photography measurements used to compare porosity differences among treatments and, as they affect plant microclimate and, therefore, yield and berry quality. Also, all previous studied indexes (LAI, SA, SFEr) tended to overestimate the relationship between exposed leaf surface and porosity of each treatment, but the use of digital method proved to be an effective tool in order to assess canopy porosity. Results showed that not positioned and free systems (sprawl) scored between 25- 50% more porosity in the clusters area than the fixed vertical system (VSP), which resulted in a better plant microclimate for test conditions, mainly by improving the exposure of internal clusters and internal canopy ventilation. On the other hand, higher crop load treatment (S2) showed a real increase in yield (16%) without any relevant change into must composition, even improving total anthocyanin content into berry during ripening
Resumo:
In warm and dry climates, the use of porous systems should be required in order to allow a better leaf distribution inside the plant, causing more space in the clusters area and enhancing determined physiological processes so in the leaf (photosynthesis, ventilation, transpiration) as in berry (growth and maturation). Plant geometry indexes, yield and must composition have been studied in three different systems: sprawl with 12 shoots/m (S1); sprawl system with 18 shoots/m (S2) and vertical positioned system or VSP with 12 shoots/m (VSP1). Total leaf area increases as the crop load does, whoever surface area depends on to two factors: crop load and the training system (VSP vs . sprawl), which can provide differences in leaf exposure efficiencies. The main objective of this study was to validate digital photography measurements used to compare porosity differences among treatments and, as they affect plant microclimate and, therefore, yield and berry quality. Also, all previous studied indexes (LAI, SA, SFEr) tended to overestimate the relationship between exposed leaf surface and porosity of each treatment, but the use of digital method proved to be an effective tool in order to assess canopy porosity. Results showed that not positioned and free systems (sprawl) scored between 25 - 50% more porosity in the clusters area than the fixed vertical system (VSP), which resulted in a better plant microclimate for test conditions, mainly by improving the exposure of internal clusters and internal canopy ventilation. On the other hand, higher crop load treatment (S2) showed a real increase in yield (16%) without any relevant change into must composition, even improving total anthocyanin content into berry during ripening
Resumo:
A series of numerical simulations of the flow over a forest stand have been conducted using two different turbulence closure models along with various levels of canopy morphology data. Simulations have been validated against Stereoscopic Particle Image Velocimetry measurements from a wind tunnel study using one hundred architectural model trees, the porosities of which have been assessed using a photographic technique. It has been found that an accurate assessment of the porosity of the canopy, and specifically the variability with height, improves simulation quality regardless of the turbulence closure model used or the level of canopy geometry included. The observed flow field and recovery of the wake is in line with characteristic canopy flows published in the literature and it was found that the shear stress transport turbulence model was best able to capture this detail numerically.
Resumo:
Ozone stomatal fluxes were modeled for a 3-year period following different approaches for a commercial variety of durum wheat (Triticum durum Desf. cv. Camacho) at the phenological stage of anthesis. All models performed in the same range, although not all of them afforded equally significant results. Nevertheless, all of them suggest that stomatal conductance would account for the main percentage of ozone deposition fluxes. A new modeling approach was tested, based on a 3-D architectural model of the wheat canopy, and fairly accurate results were obtained. Plant species-specific measurements, as well as measurements of stomatal conductance and environmental parameters, were required. The method proposed for calculating ozone stomatal fluxes (FO(3_3-D)) from experimental gs data and modeling them as a function of certain environmental parameters in conjunction with the use of the YPLANT model seems to be adequate, providing realistic estimates of the canopy FO(3_3-D), integrating and not neglecting the contribution of the lower leaves with respect to the flag leaf, although a further development of this model is needed.
Resumo:
The effects of conversion treatments, depending on ecological factors and silvicultural parameters (thinning intensity, thinning type and rotation, among others) have been studied during the last fifteen years in an experimental trial in Central Spain. The general climate is continental Mediterranean; soils are low depth and limy; vegetation is an homogeneous dense coppices of Quercus ilex with isolated Pinus nigra trees. The experimental design (three locations) includes different thinning intensities (from 0 to 100% of extracted basal area). Inventories have been carried out in 1994 and 2010; thinning treatments were done in 1995 and 2011. Analysis of the effects of the conversion treatment show the increment of diameter and height growth rates, the canopy recovery and the stand resprouting, finding differences in these effects between thinning treatments. Besides the induced changes at holm oak stand, the application of conversion treatment clearly changed the woodland dynamics. Fifteen years after the thinnings, floristic composition varied and an abundant pine regeneration was installed in the woodland. In this work we describe the changes between inventories in tree species composition and diameter distribution, specially in the case of black pine. The conversion treatment caused changes in forest dynamics in the short term, increasing biodiversity and diversifying the forest structure. The fast installation of Pinus regeneration suggests the potential of the zone for the establishment of multipurpose mixed Quercus-Pinus stands in wide areas where Quercus species were favoured by human populations for firewood production. Conversion treatment of coppices, with the creation of mixed stands, constitutes a good management alternative for extensive areas and an interesting technique to adaptation to global change.
Resumo:
he size of seeds and the microsite of seed dispersal may affect the early establishment of seedlings through different physiological processes. Here, we examined the effects of seed size and light availability on seedling growth and survival, and whether such effects were mediated by water use efficiency. Acorns of Quercus petraea and the more drought-tolerant Quercus pyrenaica were sowed within and around a tree canopy gap in a sub-Mediterranean forest stand. We monitored seedling emergence and measured predawn leaf water potential (Ψpd), leaf nitrogen per unit area (Na), leaf mass per area, leaf carbon isotope composition (δ13C) and plant growth at the end of the first summer. Survival was measured on the next year. Path analysis revealed a consistent pattern in both species of higher δ13C as Ψpd decreased and higher δ13C as seedlings emerged later in the season, indicating an increase in 13C as the growing season is shorter and drier. There was a direct positive effect of seed size on δ13C in Q. petraea that was absent in Q. pyrenaica. Leaf δ13C had no effect on growth but the probability of surviving until the second year was higher for those seedlings of Q. pyrenaica that had lower δ13C on the first year. In conclusion, leaf δ13C is affected by seed size, seedling emergence time and the availability of light and water, however, leaf δ13C is irrelevant for first year growth, which is directly dependent on the amount of seed reserves.
Resumo:
The aim of this study was to evaluate the effects of row orien¬tation on vine and soil water status in an irrigated vineyard. The trial was developed during 2006, 2007 and 2008, in the South East region of Madrid (Spain) on 5-year old Cabernet franc grapevines (Vitis vinifera L.) grafted onto 140Ru. Plant spacing was 2.5 m x 1.5 m and vines were trained to a VSP. Four orientations were stu¬died: North-South (N-S), East-West (E-W), Northeast-Southwest (N+45) and North-South +20o (N+20). Irrigation (0.4•ET0) started when shoot growth stopped. Soil water availability was measured using a TDR technique with forty buried probes. Row orientation did not have any effect on water consumption in the vineyard. At maturity, leaf water potential was measured at predawn, early mor¬ning, midday and 14:00 solar time, on both canopy sides - sun and shade – ; the early morning measurement was the one that better differentiated treatments. Leaf water potential was a good indica¬tor of plant water status. Differences between (N-S and E-W) and (N+20 and N+45) treatments were obtained both on sun and shade canopy sides, N+20 and N+45 having lower leaf water potentials then drier leaves. The water stress integral shows that N-S and E-W reach the end of maturation with a greater level of hydration than N+45 and N+20. As a whole, N+45 and N+20 orientations, without affecting too much the soil available water content, induce regularly more water stress to the vine at some periods, probably due to an higher sunlight interception in early morning which makes water limitation for the vine more early and thus more severe during the day.
Resumo:
Th e CERES-Maize model is the most widely used maize (Zea mays L.) model and is a recognized reference for comparing new developments in maize growth, development, and yield simulation. Th e objective of this study was to present and evaluate CSMIXIM, a new maize simulation model for DSSAT version 4.5. Code from CSM-CERES-Maize, the modular version of the model, was modifi ed to include a number of model improvements. Model enhancements included the simulation of leaf area, C assimilation and partitioning, ear growth, kernel number, grain yield, and plant N acquisition and distribution. Th e addition of two genetic coeffi cients to simulate per-leaf foliar surface produced 32% smaller root mean square error (RMSE) values estimating leaf area index than did CSM-CERES. Grain yield and total shoot biomass were correctly simulated by both models. Carbon partitioning, however, showed diff erences. Th e CSM-IXIM model simulated leaf mass more accurately, reducing the CSM-CERES error by 44%, but overestimated stem mass, especially aft er stress, resulting in similar average RMSE values as CSM-CERES. Excessive N uptake aft er fertilization events as simulated by CSM-CERES was also corrected, reducing the error by 16%. Th e accuracy of N distribution to stems was improved by 68%. Th ese improvements in CSM-IXIM provided a stable basis for more precise simulation of maize canopy growth and yield and a framework for continuing future model developments
Resumo:
The evapotranspiration (ET c) of a table grape vineyard (Vitis vinifera, cv. Red Globe) trained to a gable trellis under netting and black plastic mulching was determined under semiarid conditions in the central Ebro River Valley during 2007 and 2008. The netting was made of high-density polyethylene (pores of 12 mm2) and was placed just above the ground canopy about 2.2 m above soil surface. Black plastic mulching was used to minimize soil evaporation. The surface renewal method was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Later, latent heat flux (LE) values were obtained by solving the energy balance equation. For the May–October period, seasonal ET c was about 843 mm in 2007 and 787 mm in 2008. The experimental weekly crop coefficients (K cexp) fluctuated between 0.64 and 1.2. These values represent crop coefficients adjusted to take into account the reduction in ET c caused by the netting and the black plastic mulching. Average K cexp values during mid- and end-season stages were 0.79 and 0.98, respectively. End-season K cexp was higher due to combination of factors related to the precipitation and low ET o conditions that are typical in this region during fall. Estimated crop coefficients using the Allen et al. (1998) approach adjusting for the effects of the netting and black plastic mulching (K cFAO) showed a good agreement with the experimental K cexp values.
Resumo:
The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.