2 resultados para CALCULI
em Universidad Politécnica de Madrid
Resumo:
Esta tesis estudia la reducción plena (‘full reduction’ en inglés) en distintos cálculos lambda. 1 En esencia, la reducción plena consiste en evaluar los cuerpos de las funciones en los lenguajes de programación funcional con ligaduras. Se toma el cálculo lambda clásico (i.e., puro y sin tipos) como el sistema formal que modela el paradigma de programación funcional. La reducción plena es una técnica fundamental cuando se considera a los programas como datos, por ejemplo para la optimización de programas mediante evaluación parcial, o cuando algún atributo del programa se representa a su vez por un programa, como el tipo en los demostradores automáticos de teoremas actuales. Muchas semánticas operacionales que realizan reducción plena tienen naturaleza híbrida. Se introduce formalmente la noción de naturaleza híbrida, que constituye el hilo conductor de todo el trabajo. En el cálculo lambda la naturaleza híbrida se manifiesta como una ‘distinción de fase’ en el tratamiento de las abstracciones, ya sean consideradas desde fuera o desde dentro de si mismas. Esta distinción de fase conlleva una estructura en capas en la que una semántica híbrida depende de una o más semánticas subsidiarias. Desde el punto de vista de los lenguajes de programación, la tesis muestra como derivar, mediante técnicas de transformación de programas, implementaciones de semánticas operacionales que reducen plenamente a partir de sus especificaciones. Las técnicas de transformación de programas consisten en transformaciones sintácticas que preservan la equivalencia semántica de los programas. Se ajustan las técnicas de transformación de programas existentes para trabajar con implementaciones de semánticas híbridas. Además, se muestra el impacto que tiene la reducción plena en las implementaciones que utilizan entornos. Los entornos son un ingrediente fundamental en las implementaciones realistas de una máquina abstracta. Desde el punto de vista de los sistemas formales, la tesis desvela una teoría novedosa para el cálculo lambda con paso por valor (‘call-by-value lambda calculus’ en inglés) que es consistente con la reducción plena. Dicha teoría induce una noción de equivalencia observacional que distingue más puntos que las teorías existentes para dicho cálculo. Esta contribución ayuda a establecer una ‘teoría estándar’ en el cálculo lambda con paso por valor que es análoga a la ‘teoría estándar’ del cálculo lambda clásico propugnada por Barendregt. Se presentan resultados de teoría de la demostración, y se sugiere como abordar el estudio de teoría de modelos. ABSTRACT This thesis studies full reduction in lambda calculi. In a nutshell, full reduction consists in evaluating the body of the functions in a functional programming language with binders. The classical (i.e., pure untyped) lambda calculus is set as the formal system that models the functional paradigm. Full reduction is a prominent technique when programs are treated as data objects, for instance when performing optimisations by partial evaluation, or when some attribute of the program is represented by a program itself, like the type in modern proof assistants. A notable feature of many full-reducing operational semantics is its hybrid nature, which is introduced and which constitutes the guiding theme of the thesis. In the lambda calculus, the hybrid nature amounts to a ‘phase distinction’ in the treatment of abstractions when considered either from outside or from inside themselves. This distinction entails a layered structure in which a hybrid semantics depends on one or more subsidiary semantics. From a programming languages standpoint, the thesis shows how to derive implementations of full-reducing operational semantics from their specifications, by using program transformations techniques. The program transformation techniques are syntactical transformations which preserve the semantic equivalence of programs. The existing program transformation techniques are adjusted to work with implementations of hybrid semantics. The thesis also shows how full reduction impacts the implementations that use the environment technique. The environment technique is a key ingredient of real-world implementations of abstract machines which helps to circumvent the issue with binders. From a formal systems standpoint, the thesis discloses a novel consistent theory for the call-by-value variant of the lambda calculus which accounts for full reduction. This novel theory entails a notion of observational equivalence which distinguishes more points than other existing theories for the call-by-value lambda calculus. This contribution helps to establish a ‘standard theory’ in that calculus which constitutes the analogous of the ‘standard theory’ advocated by Barendregt in the classical lambda calculus. Some prooftheoretical results are presented, and insights on the model-theoretical study are given.
Resumo:
A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.