3 resultados para C ALLOYS

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presence

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he composition, strain and surface morphology of (0001)InGaN layers are investigated as a function of growth temperature (460–645 °C) and impinging In flux. Three different growth regimes: nitrogen-rich, metal-rich and intermediate metal-rich, are clearly identified and found to be in correlation with surface morphology and strain relaxation. Best epilayers’ quality is obtained when growing under intermediate metal-rich conditions, with 1–2 monolayers thick In ad-coverage. For a given In flux, the In incorporation decreases with increasing growth temperature due to InN thermal decomposition that follows an Arrhenius behavior with 1.84±0.12 eV activation energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.