7 resultados para Burn-in

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas-cooled pebble bed accelerator driven system, TADSEA (Transmutation Advanced Device for Sustainable Energy Application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, cooled by helium which enables high temperatures (in the order of 1200 K), to generate hydrogen from water either by high temperature electrolysis or by thermochemical cycles. For designing this device several configurations were studied, including several reflectors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW of thermal power. In this paper new studies performed on deep burn in-core fuel management strategy for LWR waste are presented. The fuel cycle on TADSEA device has been analyzed based on both: driven and transmutation fuel that had been proposed by the General Atomic design of a gas turbine-modular helium reactor. The transmutation results of the three fuel management strategies, using driven, transmutation and standard LWR spent fuel were compared, and several parameters describing the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain, are also presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In activation calculations, there are several approaches to quantify uncertainties: deterministic by means of sensitivity analysis, and stochastic by means of Monte Carlo. Here, two different Monte Carlo approaches for nuclear data uncertainty are presented: the first one is the Total Monte Carlo (TMC). The second one is by means of a Monte Carlo sampling of the covariance information included in the nuclear data libraries to propagate these uncertainties throughout the activation calculations. This last approach is what we named Covariance Uncertainty Propagation, CUP. This work presents both approaches and their differences. Also, they are compared by means of an activation calculation, where the cross-section uncertainties of 239Pu and 241Pu are propagated in an ADS activation calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to present the Exercise I-1b “pin-cell burn-up benchmark” proposed in the framework of OECD LWR UAM. Its objective is to address the uncertainty due to the basic nuclear data as well as the impact of processing the nuclear and covariance data in a pin-cell depletion calculation. Four different sensitivity/uncertainty propagation methodologies participate in this benchmark (GRS, NRG, UPM, and SNU&KAERI). The paper describes the main features of the UPM model (hybrid method) compared with other methodologies. The requested output provided by UPM is presented, and it is discussed regarding the results of other methodologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/ Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment- simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

microarthropods play an important role in fungi dispersion, but little is still known about the interaction between truffle and soil microarthropods. The aim of this study was to investigate the ability of the truffle Tuber aestivum to modify soil biogeochemistry (i.e. create a zone of scarce vegetation around the host plant, called a burn or brûlé) and to highlight the effects of the brûlé on the soil fauna community. We compared soil microarthropod communities found in the soil inside versus outside the T. aestivum brûlé with the chemistry of soil collected inside versus outside the brûlé. The study was carried out in three Mediterranean areas, two in Italy and one in Spain. The results confirmed the ability of T. aestivum to modify soil biogeochemistry in the brûlé: pH was higher and total organic carbon tended to be lower inside the brûlé compared to outside. Soil fauna communities showed some interesting differences. Some groups, such as Symphyla and Pauropoda, adapted well to the soil; some Collembolan families, and biodiversity and soil quality indices were generally higher outside the brûlé. Folsomia sp. showed higher abundance in the soil of the brûlé compared to outside. The results suggest that some Collembola groups may be attracted by the fungal metabolites produced by T. aestivum, while other Collembola and other microarthropods may find an unfavourable environment in the soil of the brûlé. The next steps will be to confirm this hypothesis and to extend the study to other keys groups such as nematodes and earthworms and to link fluctuations of soil communities with the biological phases of truffle growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article addresses the problem of spray vaporization and combustion in axisymmetric opposed-jet configurations involving a stream of hot air counterflowing against a stream of nitrogen carrying a spray of fuel droplets. The Reynolds numbers of the jets are assumed to be large, so that mixing of the two streams is restricted to a thin mixing layer that separates the counterflowing streams. The evolution of the droplets in their feed stream from the injection location is seen to depend fundamentally on the value of the droplet Stokes number, St, defined as the ratio of the droplet acceleration time to the mixing layer strain time close to the stagnation point. Two different regimes of spray vaporization and combustion can be identified depending on the value of St. For values of St below a critical value, equal to 1/4 for dilute sprays with small values of the spray liquid mass loading ratio, the droplets decelerate to approach the gas stagnation plane with a vanishing axial velocity. In this case, the droplets located initially near the axis reach the mixing layer, where they can vaporize due to the heat received from the hot air, producing fuel vapor that can burn with the oxygen in a diffusion flame located on the air side of the mixing layer. The character of the spray combustion is different for values of St of order unity, because the droplets cross the stagnation plane and move into the opposing air stream, reaching distances that are much larger than the mixing layer thickness before they turn around. The vaporization of these crossing droplets, and also the combustion of the fuel vapor generated by them, occur in the hot air stream, without significant effects of molecular diffusion, generating a vaporization-assisted nonpremixed flame that stands on the air side outside the mixing layer. Separate formulations will be given below for these two regimes of combustion, with attention restricted to the near-stagnation-point region, where the solution is self-similar and all variables are only dependent on the distance to the stagnation plane. The resulting formulations display a reduced number of controlling parameters that effectively embody dependences of the structure of the spray flame on spray dilution, droplet inertia, and fuel preferential diffusion. Sample solutions are given for the limiting cases of pure vaporization and of infinitely fast chemistry, with the latter limit formulated in terms of chemistry-free coupling functions that allow for general nonunity Lewis numbers of the fuel vapor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Spanish elm programme began in 1986 in response to the devastating impact of Dutch elm disease on natural elm stands and urban trees. Its main objectives were to conserve remaining genetic resources and select and breed tolerant native elm genotypes. After 27 years of work conducting susceptibility trials on thousands of elm genotypes, the first seven tolerant Ulmus minor trees are now being registered by the Spanish Environmental Administration. This paper presents the results of the susceptibility tests on these clones and their distinctive genetic, morphological and phenological features. In all susceptibility trials the commercial ?Sapporo Autumn Gold? clone, which is highly tolerant to O. novo-ulmi, was used as a control. The registered clones were named ?Ademuz?, ?Dehesa de la Villa?, ?Majadahonda?, ?Toledo?, ?Dehesa de Amaniel?, ?Retiro? and ?Fuente Umbría?. The most tolerant clone was ?Dehesa de Amaniel?, as its wilting values were below 5% during the two consecutive inoculation trials performed in Madrid. ?Fuente Umbría?, tested over four consecutive years in Guadalajara and Palencia, was the Spanish clone with the most reliable tolerance level to O. novo-ulmi. The ?Ademuz? and ?Majadahonda? clones had the highest ornamental scores and are promising trees for use in urban environments and tree breeding for ornamental quality. These two genotypes showed a later bud burst phenology than the other U. minor clones, demonstrating suitability to areas with late frost events. The Spanish programme aims to substantially increase the range of tolerant native elms through new selections and crossings to gain a better understanding of the genetic basis of resistance.