2 resultados para Building Capability
em Universidad Politécnica de Madrid
Resumo:
Environmental constraints imposed on hydropoweroperation are usually given in the form of minimum environmental flows and maximum and minimum rates of change of flows, or ramp rates. One solution proposed to mitigate the environmental impact caused by the flows discharged by a hydropower plant while reducing the economic impact of the above-mentioned constraints consists in building a re-regulationreservoir, or afterbay, downstream of the power plant. Adding pumpingcapability between the re-regulationreservoir and the main one could contribute both to reducing the size of the re-regulationreservoir, with the consequent environmental improvement, and to improving the economic feasibility of the project, always fulfilling the environmental constraints imposed to hydropoweroperation. The objective of this paper is studying the contribution of a re-regulationreservoir to fulfilling the environmental constraints while reducing the economic impact of said constraints. For that purpose, a revenue-driven optimization model based on mixed integer linear programming is used. Additionally, the advantages of adding pumpingcapability are analysed. In order to illustrate the applicability of the methodology, a case study based on a real hydropower plant is presented
Resumo:
Positive composite electrodes having LiNi0.5Mn1.5O4 spinel as active material, a blend of graphite and carbon black for increasing the electrode electrical conductivity and either polyvinyldenefluoride (PVDF) or a blend of PVDF with a small amount of Teflon® (1 wt%) for building up the electrode. They have been processed by tape casting on an aluminum foil as current collector using the doctor blade technique. Additionally, the component blends were either sonicated or not, and the processed electrodes were compacted or not under subsequent cold pressing. Composites electrodes with high weight, up to 17 mg/cm2, were prepared and studied as positive electrodes for lithium-ion batteries. The addition of Teflon® and the application of the sonication treatment lead to uniform electrodes that are well-adhered to the aluminum foil. Both parameters contribute to improve the capacity drained at high rates (5C). Additional compaction of the electrode/aluminum assemblies remarkably enhances the electrode rate capabilities. At 5C rate, remarkable capacity retentions between 80% and 90% are found for electrodes with weights in the range 3–17 mg/cm2, having Teflon® in their formulation, prepared after sonication of their component blends and compacted under 2 tonnes/cm2.