15 resultados para Bruit blanc Gaussien
em Universidad Politécnica de Madrid
Resumo:
Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures.
Resumo:
We describe how to use a Granular Linguistic Model of a Phenomenon (GLMP) to assess e-learning processes. We apply this technique to evaluate algorithm learning using the GRAPHs learning environment.
Resumo:
Grapevine germplasm, including 38 of the main Portuguese cultivars and three foreign cultivars, Pinot Noir, Pinot Blanc and Chasselas, used as a reference, and 37 true-to-type clones from the Alvarinho, Arinto, Loureiro, Moscatel Galego Branco, Trajadura and Vinhão cultivars were studied using AFLP and three retrotransposon-based molecular techniques, IRAP, REMAP and SSAP. To study the retrotransposon-based polymorphisms, 18 primers based on the LTR sequences of Tvv1, Gret1 and Vine-1 were used. In the analysis of 41 cultivars, 517 IRAP, REMAP, AFLP and SSAP fragments were obtained, 83% of which were polymorphic. For IRAP, only the Tvv1Fa primer amplified DNA fragments. In the REMAP analysis, the Tvv1Fa-Ms14 primer combination only produced polymorphic bands, and the Vine-1 primers produced mainly ISSR fragments. The highest number of polymorphic fragments was found for AFLP. Both AFLP and SSAP showed a greater capacity for identifying clones, resulting in 15 and 9 clones identified, respectively. Together, all of the techniques allowed for the identification of 54% of the studied clones, which is an important step in solving one of the challenges that viticulture currently faces.
Resumo:
This work studies the physiology of Schizosaccharomyces pombe strain 938 in the production of white wine with high malic acid levels as the sole fermentative yeast, as well as in mixed and sequential fermentations with Saccharomyces cerevisiae Cru Blanc. The induction of controlled maloalcoholic fermentation through the use of Schizosaccharomyces spp. is now being viewed with much interest. The acetic, malic and pyruvic acid concentrations, relative density and pH of the musts were measured over the entire fermentation period. In all fermentations in which Schizo. pombe 938 was involved, nearly all the malic acid was consumed and moderate acetic concentrations produced. The urea content and alcohol level of these wines were notably lower than in those made with Sacch. cerevisiae Cru Blanc alone. The pyruvic acid concentration was significantly higher in Schizo. pombe fermentations. The sensorial properties of the different final wines varied widely.
Resumo:
In a previous paper, we proposed an axiomatic model for measuring self-contradiction in the framework of Atanassov fuzzy sets. This way, contradiction measures that are semicontinuous and completely semicontinuous, from both below and above, were defined. Although some examples were given, the problem of finding families of functions satisfying the different axioms remained open. The purpose of this paper is to construct some families of contradiction measures firstly using continuous t-norms and t-conorms, and secondly by means of strong negations. In both cases, we study the properties that they satisfy. These families are then classified according the different kinds of measures presented in the above paper.
Resumo:
E-learning systems output a huge quantity of data on a learning process. However, it takes a lot of specialist human resources to manually process these data and generate an assessment report. Additionally, for formative assessment, the report should state the attainment level of the learning goals defined by the instructor. This paper describes the use of the granular linguistic model of a phenomenon (GLMP) to model the assessment of the learning process and implement the automated generation of an assessment report. GLMP is based on fuzzy logic and the computational theory of perceptions. This technique is useful for implementing complex assessment criteria using inference systems based on linguistic rules. Apart from the grade, the model also generates a detailed natural language progress report on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. This is illustrated by applying the model to the assessment of Dijkstra’s algorithm learning using a visual simulation-based graph algorithm learning environment, called GRAPHs
Resumo:
Las propiedades N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos ordinarios y en los conjuntos borrosos intuicionistas de Atanassov. En el presente artículo se inicia el estudio de las mencionadas propiedades, dentro del marco de los conjuntos borrosos de tipo 2 cuyos grados de pertenencia son funciones normales y convexas (L). En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se establecen algunos criterios para verificar tales propiedades.
Resumo:
Walker et al. defined two families of binary operations on M (set of functions of [0,1] in [0,1]), and they determined that, under certain conditions, those operations are t-norms (triangular norm) or t-conorms on L (all the normal and convex functions of M). We define binary operations on M, more general than those given by Walker et al., and we study many properties of these general operations that allow us to deduce new t-norms and t-conorms on both L, and M.
Resumo:
Los conjuntos borrosos de tipo 2 (T2FSs) fueron introducidos por L.A. Zadeh en 1975 [65], como una extensión de los conjuntos borrosos de tipo 1 (FSs). Mientras que en estos últimos el grado de pertenencia de un elemento al conjunto viene determinado por un valor en el intervalo [0, 1], en el caso de los T2FSs el grado de pertenencia de un elemento es un conjunto borroso en [0,1], es decir, un T2FS queda determinado por una función de pertenencia μ : X → M, donde M = [0, 1][0,1] = Map([0, 1], [0, 1]), es el conjunto de las funciones de [0,1] en [0,1] (ver [39], [42], [43], [61]). Desde que los T2FSs fueron introducidos, se han generalizado a dicho conjunto (ver [39], [42], [43], [61], por ejemplo), a partir del “Principio de Extensión” de Zadeh [65] (ver Teorema 1.1), muchas de las definiciones, operaciones, propiedades y resultados obtenidos en los FSs. Sin embargo, como sucede en cualquier área de investigación, quedan muchas lagunas y problemas abiertos que suponen un reto para cualquiera que quiera hacer un estudio profundo en este campo. A este reto se ha dedicado el presente trabajo, logrando avances importantes en este sentido de “rellenar huecos” existentes en la teoría de los conjuntos borrosos de tipo 2, especialmente en las propiedades de autocontradicción y N-autocontradicción, y en las operaciones de negación, t-norma y t-conorma sobre los T2FSs. Cabe destacar que en [61] se justifica que las operaciones sobre los T2FSs (Map(X,M)) se pueden definir de forma natural a partir de las operaciones sobre M, verificando las mismas propiedades. Por tanto, por ser más fácil, en el presente trabajo se toma como objeto de estudio a M, y algunos de sus subconjuntos, en vez de Map(X,M). En cuanto a la operación de negación, en el marco de los conjuntos borrosos de tipo 2 (T2FSs), usualmente se emplea para representar la negación en M, una operación asociada a la negación estándar en [0,1]. Sin embargo, dicha operación no verifica los axiomas que, intuitivamente, debe verificar cualquier operación para ser considerada negación en el conjunto M. En este trabajo se presentan los axiomas de negación y negación fuerte en los T2FSs. También se define una operación asociada a cualquier negación suprayectiva en [0,1], incluyendo la negación estándar, y se estudia, junto con otras propiedades, si es negación y negación fuerte en L (conjunto de las funciones de M normales y convexas). Además, se comprueba en qué condiciones se cumplen las leyes de De Morgan para un extenso conjunto de pares de operaciones binarias en M. Por otra parte, las propiedades de N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos de tipo 1 (FSs) y en los conjuntos borrosos intuicionistas de Atanassov (AIFSs). En el presente trabajo se inicia el estudio de las mencionadas propiedades, dentro del marco de los T2FSs cuyos grados de pertenencia están en L. En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se determinan algunos criterios para verificar tales propiedades. En cuanto a otras operaciones, Walker et al. ([61], [63]) definieron dos familias de operaciones binarias sobre M, y determinaron que, bajo ciertas condiciones, estas operaciones son t-normas (normas triangulares) o t-conormas sobre L. En este trabajo se introducen operaciones binarias sobre M, unas más generales y otras diferentes a las dadas por Walker et al., y se estudian varias propiedades de las mismas, con el objeto de deducir nuevas t-normas y t-conormas sobre L. ABSTRACT Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh in 1975 [65] as an extension of type-1 fuzzy sets (FSs). Whereas for FSs the degree of membership of an element of a set is determined by a value in the interval [0, 1] , the degree of membership of an element for T2FSs is a fuzzy set in [0,1], that is, a T2FS is determined by a membership function μ : X → M, where M = [0, 1][0,1] is the set of functions from [0,1] to [0,1] (see [39], [42], [43], [61]). Later, many definitions, operations, properties and results known on FSs, have been generalized to T2FSs (e.g. see [39], [42], [43], [61]) by employing Zadeh’s Extension Principle [65] (see Theorem 1.1). However, as in any area of research, there are still many open problems which represent a challenge for anyone who wants to make a deep study in this field. Then, we have been dedicated to such challenge, making significant progress in this direction to “fill gaps” (close open problems) in the theory of T2FSs, especially on the properties of self-contradiction and N-self-contradiction, and on the operations of negations, t-norms (triangular norms) and t-conorms on T2FSs. Walker and Walker justify in [61] that the operations on Map(X,M) can be defined naturally from the operations onMand have the same properties. Therefore, we will work onM(study subject), and some subsets of M, as all the results are easily and directly extensible to Map(X,M). About the operation of negation, usually has been employed in the framework of T2FSs, a operation associated to standard negation on [0,1], but such operation does not satisfy the negation axioms on M. In this work, we introduce the axioms that a function inMshould satisfy to qualify as a type-2 negation and strong type-2 negation. Also, we define a operation on M associated to any suprajective negation on [0,1], and analyse, among others properties, if such operation is negation or strong negation on L (all normal and convex functions of M). Besides, we study the De Morgan’s laws, with respect to some binary operations on M. On the other hand, The properties of self-contradiction and N-self-contradiction have been extensively studied on FSs and on the Atanassov’s intuitionistic fuzzy sets (AIFSs). Thereon, in this research we begin the study of the mentioned properties on the framework of T2FSs. In this sense, we give the definitions about self-contradiction and N-self-contradiction on L, and establish the criteria to verify these properties on L. Respect to the t-norms and t-conorms, Walker et al. ([61], [63]) defined two families of binary operations on M and found that, under some conditions, these operations are t-norms or t-conorms on L. In this work we introduce more general binary operations on M than those given by Walker et al. and study which are the minimum conditions necessary for these operations satisfy each of the axioms of the t-norm and t-conorm.
Resumo:
En esta tesis trabajamos sobre un problema computacional de formulación muy sencilla. La adición de distintos requisitos al enunciado general, abre un abanico de problemas distintos, de los cuales abordaremos un grupo variado y representativo.
Resumo:
Walker et al. ([19], [20]) definieron dos familias de operaciones binarias sobre M (conjunto de las funciones de [0,1] en [0,1]), y determinaron que, bajo ciertas condiciones, estas operaciones son tnormas (normas triangulares) o t-conormas sobre L (subconjunto de las funciones normales y convexas de M). En este trabajo se introducen dos operaciones binarias sobre M, diferentes a las dadas por Walker et al., y se estudian varias propiedades de las mismas, con el objeto de deducir nuevas t-normas y t-conormas sobre L y sobre M.
Resumo:
In hot Spanish climate, Toledo, Syrah and Sauvignon blanc Vineyard were treated in pre veraison with yeast derivatives RD-LM and RD- LA to stimulate phenolic and aromatic maturity respectively (application of yeast derivatives specifically designed to be used with the patent foliar application technology WO/2014/024039, Lallemand Inc. Canada). For studied effects in berry and wine composition three harvest time had been done. Experimented yeast derivatives had no significant effects on yield components and vegetative growth in both varieties. The Syrah RD-LM variety presented higher total and extractable anthocyanins and also more amount of tannins, although this last ones are not evident in the sensory analysis. The sensory analysis of wine has given very similar results in both varieties but with significant results in favored by phenols and tannins derived RD- LM and RD-LA respectively.
Resumo:
El concepto de algoritmo es básico en informática, por lo que es crucial que los alumnos profundicen en él desde el inicio de su formación. Por tanto, contar con una herramienta que guíe a los estudiantes en su aprendizaje puede suponer una gran ayuda en su formación. La mayoría de los autores coinciden en que, para determinar la eficacia de una herramienta de visualización de algoritmos, es esencial cómo se utiliza. Así, los estudiantes que participan activamente en la visualización superan claramente a los que la contemplan de forma pasiva. Por ello, pensamos que uno de los mejores ejercicios para un alumno consiste en simular la ejecución del algoritmo que desea aprender mediante el uso de una herramienta de visualización, i. e. consiste en realizar una simulación visual de dicho algoritmo. La primera parte de esta tesis presenta los resultados de una profunda investigación sobre las características que debe reunir una herramienta de ayuda al aprendizaje de algoritmos y conceptos matemáticos para optimizar su efectividad: el conjunto de especificaciones eMathTeacher, además de un entorno de aprendizaje que integra herramientas que las cumplen: GRAPHs. Hemos estudiado cuáles son las cualidades esenciales para potenciar la eficacia de un sistema e-learning de este tipo. Esto nos ha llevado a la definición del concepto eMathTeacher, que se ha materializado en el conjunto de especificaciones eMathTeacher. Una herramienta e-learning cumple las especificaciones eMathTeacher si actúa como un profesor virtual de matemáticas, i. e. si es una herramienta de autoevaluación que ayuda a los alumnos a aprender de forma activa y autónoma conceptos o algoritmos matemáticos, corrigiendo sus errores y proporcionando pistas para encontrar la respuesta correcta, pero sin dársela explícitamente. En estas herramientas, la simulación del algoritmo no continúa hasta que el usuario introduce la respuesta correcta. Para poder reunir en un único entorno una colección de herramientas que cumplan las especificaciones eMathTeacher hemos creado GRAPHs, un entorno ampliable, basado en simulación visual, diseñado para el aprendizaje activo e independiente de los algoritmos de grafos y creado para que en él se integren simuladores de diferentes algoritmos. Además de las opciones de creación y edición del grafo y la visualización de los cambios producidos en él durante la simulación, el entorno incluye corrección paso a paso, animación del pseudocódigo del algoritmo, preguntas emergentes, manejo de las estructuras de datos del algoritmo y creación de un log de interacción en XML. Otro problema que nos planteamos en este trabajo, por su importancia en el proceso de aprendizaje, es el de la evaluación formativa. El uso de ciertos entornos e-learning genera gran cantidad de datos que deben ser interpretados para llegar a una evaluación que no se limite a un recuento de errores. Esto incluye el establecimiento de relaciones entre los datos disponibles y la generación de descripciones lingüísticas que informen al alumno sobre la evolución de su aprendizaje. Hasta ahora sólo un experto humano era capaz de hacer este tipo de evaluación. Nuestro objetivo ha sido crear un modelo computacional que simule el razonamiento del profesor y genere un informe sobre la evolución del aprendizaje que especifique el nivel de logro de cada uno de los objetivos definidos por el profesor. Como resultado del trabajo realizado, la segunda parte de esta tesis presenta el modelo granular lingüístico de la evaluación del aprendizaje, capaz de modelizar la evaluación y generar automáticamente informes de evaluación formativa. Este modelo es una particularización del modelo granular lingüístico de un fenómeno (GLMP), en cuyo desarrollo y formalización colaboramos, basado en la lógica borrosa y en la teoría computacional de las percepciones. Esta técnica, que utiliza sistemas de inferencia basados en reglas lingüísticas y es capaz de implementar criterios de evaluación complejos, se ha aplicado a dos casos: la evaluación, basada en criterios, de logs de interacción generados por GRAPHs y de cuestionarios de Moodle. Como consecuencia, se han implementado, probado y utilizado en el aula sistemas expertos que evalúan ambos tipos de ejercicios. Además de la calificación numérica, los sistemas generan informes de evaluación, en lenguaje natural, sobre los niveles de competencia alcanzados, usando sólo datos objetivos de respuestas correctas e incorrectas. Además, se han desarrollado dos aplicaciones capaces de ser configuradas para implementar los sistemas expertos mencionados. Una procesa los archivos producidos por GRAPHs y la otra, integrable en Moodle, evalúa basándose en los resultados de los cuestionarios. ABSTRACT The concept of algorithm is one of the core subjects in computer science. It is extremely important, then, for students to get a good grasp of this concept from the very start of their training. In this respect, having a tool that helps and shepherds students through the process of learning this concept can make a huge difference to their instruction. Much has been written about how helpful algorithm visualization tools can be. Most authors agree that the most important part of the learning process is how students use the visualization tool. Learners who are actively involved in visualization consistently outperform other learners who view the algorithms passively. Therefore we think that one of the best exercises to learn an algorithm is for the user to simulate the algorithm execution while using a visualization tool, thus performing a visual algorithm simulation. The first part of this thesis presents the eMathTeacher set of requirements together with an eMathTeacher-compliant tool called GRAPHs. For some years, we have been developing a theory about what the key features of an effective e-learning system for teaching mathematical concepts and algorithms are. This led to the definition of eMathTeacher concept, which has materialized in the eMathTeacher set of requirements. An e-learning tool is eMathTeacher compliant if it works as a virtual math trainer. In other words, it has to be an on-line self-assessment tool that helps students to actively and autonomously learn math concepts or algorithms, correcting their mistakes and providing them with clues to find the right answer. In an eMathTeacher-compliant tool, algorithm simulation does not continue until the user enters the correct answer. GRAPHs is an extendible environment designed for active and independent visual simulation-based learning of graph algorithms, set up to integrate tools to help the user simulate the execution of different algorithms. Apart from the options of creating and editing the graph, and visualizing the changes made to the graph during simulation, the environment also includes step-by-step correction, algorithm pseudo-code animation, pop-up questions, data structure handling and XML-based interaction log creation features. On the other hand, assessment is a key part of any learning process. Through the use of e-learning environments huge amounts of data can be output about this process. Nevertheless, this information has to be interpreted and represented in a practical way to arrive at a sound assessment that is not confined to merely counting mistakes. This includes establishing relationships between the available data and also providing instructive linguistic descriptions about learning evolution. Additionally, formative assessment should specify the level of attainment of the learning goals defined by the instructor. Till now, only human experts were capable of making such assessments. While facing this problem, our goal has been to create a computational model that simulates the instructor’s reasoning and generates an enlightening learning evolution report in natural language. The second part of this thesis presents the granular linguistic model of learning assessment to model the assessment of the learning process and implement the automated generation of a formative assessment report. The model is a particularization of the granular linguistic model of a phenomenon (GLMP) paradigm, based on fuzzy logic and the computational theory of perceptions, to the assessment phenomenon. This technique, useful for implementing complex assessment criteria using inference systems based on linguistic rules, has been applied to two particular cases: the assessment of the interaction logs generated by GRAPHs and the criterion-based assessment of Moodle quizzes. As a consequence, several expert systems to assess different algorithm simulations and Moodle quizzes have been implemented, tested and used in the classroom. Apart from the grade, the designed expert systems also generate natural language progress reports on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. In addition, two applications, capable of being configured to implement the expert systems, have been developed. One is geared up to process the files output by GRAPHs and the other one is a Moodle plug-in set up to perform the assessment based on the quizzes results.
Resumo:
This paper presents an overview of depth averaged modelling of fast catastrophic landslides where coupling of solid skeleton and pore fluid (air and water) is important. The first goal is to show how Biot-Zienkiewicz models can be applied to develop depth integrated, coupled models. The second objective of the paper is to consider a link which can be established between rheological and constitutive models. Perzyna´s viscoplasticity can be considered a general framework within which rheological models such as Bingham and cohesive frictional fluids can be derived. Among the several alternative numerical models, we will focus here on SPH which has not been widely applied by engineers to model landslide propagation. We propose an improvement, based on combining Finite Difference meshes associated to SPH nodes to describe pore pressure evolution inside the landslide mass. We devote a Section to analyze the performance of the models, considering three sets of tests and examples which allows to assess the model performance and limitations: (i) Problems having an analytical solution, (ii) Small scale laboratory tests, and (iii) Real cases for which we have had access to reliable information
Resumo:
Hazard and risk assessment of landslides with potentially long run-out is becoming more and more important. Numerical tools exploiting different constitutive models, initial data and numerical solution techniques are important for making the expert’s assessment more objective, even though they cannot substitute for the expert’s understanding of the site-specific conditions and the involved processes. This paper presents a depth-integrated model accounting for pore water pressure dissipation and applications both to real events and problems for which analytical solutions exist. The main ingredients are: (i) The mathematical model, which includes pore pressure dissipation as an additional equation. This makes possible to model flowslide problems with a high mobility at the beginning, the landslide mass coming to rest once pore water pressures dissipate. (ii) The rheological models describing basal friction: Bingham, frictional, Voellmy and cohesive-frictional viscous models. (iii) We have implemented simple erosion laws, providing a comparison between the approaches of Egashira, Hungr and Blanc. (iv) We propose a Lagrangian SPH model to discretize the equations, including pore water pressure information associated to the moving SPH nodes