5 resultados para Bronchiolitis, Factors Associated to Bronchiolitis.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-cost vibration monitoring system has been developed and installed on an urban steel- plated stress-ribbon footbridge. The system continuously measures: the acceleration (using 18 triaxial MEMS accelerometers distributed along the structure), the ambient temperature and the wind velocity and direction. Automated output-only modal parameter estimation based on the Stochastic Subspace Identification (SSI) is carried out in order to extract the modal parameters, i.e., the natural frequencies, damping ratios and modal shapes. Thus, this paper analyzes the time evolution of the modal parameters over a whole-year data monitoring. Firstly, for similar environmental/operational factors, the uncertainties associated to the time window size used are studied and quantified. Secondly, a methodology to track the vibration modes has been established since several of them with closely-spaced natural frequencies are identified. Thirdly, the modal parameters have been correlated against external factors. It has been shown that this stress-ribbon structure is highly sensitive to temperature variation (frequency changes of more than 20%) with strongly seasonal and daily trends

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil-Borne Pathogens Associated to New Crops of Cherry Tomato in the Province of Granada Spain

Relevância:

100.00% 100.00%

Publicador:

Resumo:

• Central America: – Regional studies in Central America (Seismic Hazard). – El Salvador Fault Zone (ESFZ). – Aguacaliente‐Navarro Fault Zone (ANFZ), Central Valley of Costa Rica. – Haiti (seismic hazard) • Spain: – Regional‐Nacional studies of seismic hazards (applications to building codes, eurocode, emergency plans, etc.) – Betic range zone, south of Spain. – Ibero‐Maghrebi region (collision zone)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sistemas de recomendación son potentes herramientas de filtrado de información que permiten a usuarios solicitar sugerencias sobre ítems que cubran sus necesidades. Tradicionalmente estas recomendaciones han estado basadas en opiniones de los mismos, así como en datos obtenidos de su consumo histórico o comportamiento en el propio sistema. Sin embargo, debido a la gran penetración y uso de los dispositivos móviles en nuestra sociedad, han surgido nuevas oportunidades en el campo de los sistemas de recomendación móviles gracias a la información contextual que se puede obtener sobre la localización o actividad de los usuarios. Debido a este estilo de vida en el que todo tiende a la movilidad y donde los usuarios están plenamente interconectados, la información contextual no sólo es física, sino que también adquiere una dimensión social. Todo esto ha dado lugar a una nueva área de investigación relacionada con los Sistemas de Recomendación Basados en Contexto (CARS) móviles donde se busca incrementar el nivel de personalización de las recomendaciones al usar dicha información. Por otro lado, este nuevo escenario en el que los usuarios llevan en todo momento un terminal móvil consigo abre la puerta a nuevas formas de recomendar. Sustituir el tradicional patrón de uso basado en petición-respuesta para evolucionar hacia un sistema proactivo es ahora posible. Estos sistemas deben identificar el momento más adecuado para generar una recomendación sin una petición explícita del usuario, siendo para ello necesario analizar su contexto. Esta tesis doctoral propone un conjunto de modelos, algoritmos y métodos orientados a incorporar proactividad en CARS móviles, a la vez que se estudia el impacto que este tipo de recomendaciones tienen en la experiencia de usuario con el fin de extraer importantes conclusiones sobre "qué", "cuándo" y "cómo" se debe notificar proactivamente. Con este propósito, se comienza planteando una arquitectura general para construir CARS móviles en escenarios sociales. Adicionalmente, se propone una nueva forma de representar el proceso de recomendación a través de una interfaz REST, lo que permite crear una arquitectura independiente de dispositivo y plataforma. Los detalles de su implementación tras su puesta en marcha en el entorno bancario español permiten asimismo validar el sistema construido. Tras esto se presenta un novedoso modelo para incorporar proactividad en CARS móviles. Éste muestra las ideas principales que permiten analizar una situación para decidir cuándo es apropiada una recomendación proactiva. Para ello se presentan algoritmos que establecen relaciones entre lo propicia que es una situación y cómo esto influye en los elementos a recomendar. Asimismo, para demostrar la viabilidad de este modelo se describe su aplicación a un escenario de recomendación para herramientas de creación de contenidos educativos. Siguiendo el modelo anterior, se presenta el diseño e implementación de nuevos interfaces móviles de usuario para recomendaciones proactivas, así como los resultados de su evaluación entre usuarios, lo que aportó importantes conclusiones para identificar cuáles son los factores más relevantes a considerar en el diseño de sistemas proactivos. A raíz de los resultados anteriores, el último punto de esta tesis presenta una metodología para calcular cuán apropiada es una situación de cara a recomendar de manera proactiva siguiendo el modelo propuesto. Como conclusión, se describe la validación llevada a cabo tras la aplicación de la arquitectura, modelo de recomendación y métodos descritos en este trabajo en una red social de aprendizaje europea. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo, y que ha propiciado la consecución de una buena base teórica y práctica para la creación de sistemas de recomendación móviles proactivos basados en información contextual. ABSTRACT Recommender systems are powerful information filtering tools which offer users personalized suggestions about items whose aim is to satisfy their needs. Traditionally the information used to make recommendations has been based on users’ ratings or data on the item’s consumption history and transactions carried out in the system. However, due to the remarkable growth in mobile devices in our society, new opportunities have arisen to improve these systems by implementing them in ubiquitous environments which provide rich context-awareness information on their location or current activity. Because of this current all-mobile lifestyle, users are socially connected permanently, which allows their context to be enhanced not only with physical information, but also with a social dimension. As a result of these novel contextual data sources, the advent of mobile Context-Aware Recommender Systems (CARS) as a research area has appeared to improve the level of personalization in recommendation. On the other hand, this new scenario in which users have their mobile devices with them all the time offers the possibility of looking into new ways of making recommendations. Evolving the traditional user request-response pattern to a proactive approach is now possible as a result of this rich contextual scenario. Thus, the key idea is that recommendations are made to the user when the current situation is appropriate, attending to the available contextual information without an explicit user request being necessary. This dissertation proposes a set of models, algorithms and methods to incorporate proactivity into mobile CARS, while the impact of proactivity is studied in terms of user experience to extract significant outcomes as to "what", "when" and "how" proactive recommendations have to be notified to users. To this end, the development of this dissertation starts from the proposal of a general architecture for building mobile CARS in scenarios with rich social data along with a new way of managing a recommendation process through a REST interface to make this architecture multi-device and cross-platform compatible. Details as regards its implementation and evaluation in a Spanish banking scenario are provided to validate its usefulness and user acceptance. After that, a novel model is presented for proactivity in mobile CARS which shows the key ideas related to decide when a situation warrants a proactive recommendation by establishing algorithms that represent the relationship between the appropriateness of a situation and the suitability of the candidate items to be recommended. A validation of these ideas in the area of e-learning authoring tools is also presented. Following the previous model, this dissertation presents the design and implementation of new mobile user interfaces for proactive notifications. The results of an evaluation among users testing these novel interfaces is also shown to study the impact of proactivity in the user experience of mobile CARS, while significant factors associated to proactivity are also identified. The last stage of this dissertation merges the previous outcomes to design a new methodology to calculate the appropriateness of a situation so as to incorporate proactivity into mobile CARS. Additionally, this work provides details about its validation in a European e-learning social network in which the whole architecture and proactive recommendation model together with its methods have been implemented. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this research, resulting in useful information from the different design and implementation stages of proactive mobile CARS.