34 resultados para Broadband Microstrip Antennas

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las comunicaciones inalámbricas han transformado profundamente la forma en la que la gente se comunica en el día a día y es, sin lugar a dudas, una de las tecnologías de nuestro tiempo que más rápidamente evoluciona. Este rápido crecimiento implica retos enormes en la tecnología subyacente, debido y entre otros motivos, a la gran demanda de capacidad de los nuevos servicios inalámbricos. Los sistemas Multiple Input Multiple Output (MIMO) han despertado mucho interés como medio de mejorar el rendimiento global del sistema, satisfaciendo de este modo y en cierta medida los nuevo requisitos exigidos. De hecho, el papel relevante de esta tecnología en los actuales esfuerzos de estandarización internacionales pone de manifiesto esta utilidad. Los sistemas MIMO sacan provecho de los grados de libertad espaciales, disponibles a través del entorno multitrayecto, para mejorar el rendimiento de la comunicación con una destacable eficiencia espectral. Con el fin de alcanzar esta mejora en el rendimiento, la diversidad espacial y por diagrama han sido empleadas tradicionalmente para reducir la correlación entre los elementos radiantes, ya que una correlación baja es condición necesaria, si bien no suficiente, para dicha mejora. Tomando como referencia, o punto de partida, las técnicas empleadas para obtener diversidad por diagrama, esta tesis doctoral surge de la búsqueda de la obtención de diversidad por diagrama y/o multiplexación espacial a través del comportamiento multimodal de la antena microstrip, proponiendo para ello un modelo cuasi analítico original para el análisis y diseño de antenas microstrip multipuerto, multimodo y reconfigurables. Este novedoso enfoque en este campo, en vez de recurrir a simulaciones de onda completa por medio de herramientas comerciales tal y como se emplea en las publicaciones existentes, reduce significativamente el esfuerzo global de análisis y diseño, en este último caso por medio de guías de diseño generales. Con el fin de lograr el objetivo planteado y después de una revisión de los principales conceptos de los sistemas MIMO que se emplearán más adelante, se fija la atención en encontrar, implementar y verificar la corrección y exactitud de un modelo analítico que sirva de base sobre la cual añadir las mejoras necesarias para obtener las características buscadas del modelo cuasi analítico propuesto. Posteriormente y partiendo del modelo analítico base seleccionado, se exploran en profundidad y en diferentes entornos multitrayecto, las posibilidades en cuanto a rendimiento se refiere de diversidad por diagrama y multiplexación espacial, proporcionadas por el comportamiento multimodal de las antenas parche microstrip sin cargar. Puesto que cada modo de la cavidad tiene su propia frecuencia de resonancia, es necesario encontrar formas de desplazar la frecuencia de resonancia de cada modo empleado para ubicarlas en la misma banda de frecuencia, manteniendo cada modo al mismo tiempo tan independiente como sea posible. Este objetivo puede lograrse cargando adecuadamente la cavidad con cargas reactivas, o alterando la geometría del parche radiante. Por consiguiente, la atención en este punto se fija en el diseño, implementación y verificación de un modelo cuasi analítico para el análisis de antenas parche microstrip multipuerto, multimodo y cargadas que permita llevar a cabo la tarea indicada, el cuál es una de las contribuciones principales de esta tesis doctoral. Finalmente y basándose en el conocimiento adquirido a través del modelo cuasi analítico, se proporcionan y aplican guías generales para el diseño de antenas microstrip multipuerto, multimodo y reconfigurables para sistemas MIMO, con el fin de mejorar su diversidad por diagrama y/o su capacidad por medio del comportamiento multimodal de las antenas parche microstrip. Se debe destacar que el trabajo presentado en esta tesis doctoral ha dado lugar a una publicación en una revista técnica internacional de un alto factor de impacto. De igual manera, el trabajo también ha sido presentado en algunas de las más importantes conferencias internacionales en el ámbito de las antenas ABSTRACT Wireless communications have deeply transformed the way people communicate on daily basis and it is undoubtedly one of the most rapidly evolving technologies of our time. This fast growing behaviour involves huge challenges on the bearing technology, due to and among others reasons, the high demanding capacity of new wireless services. MIMO systems have given rise to considerable interest as a means to enhance the overall system performance, thus satisfying somehow the new demanding requirements. Indeed, the significant role of this technology on current international standardization efforts, highlights this usefulness. MIMO systems make profit from the spatial degrees of freedom available through the multipath scenario to improve the communication performance with a remarkable spectral efficiency. In order to achieve this performance improvement, spatial and pattern diversity have been traditionally used to decrease the correlation between antenna elements, as low correlation is a necessary but not sufficient condition. Taking as a reference, or starting point, the techniques used to achieve pattern diversity, this Philosophiae Doctor (Ph.D.) arises from the pursuit of obtaining pattern diversity and/or spatial multiplexing capabilities through the multimode microstrip behaviour, thus proposing a novel quasi analytical model for the analysis and design of reconfigurable multimode multiport microstrip antennas. This innovative approach on this field, instead of resorting to full-wave simulations through commercial tools as done in the available publications, significantly reduces the overall analysis and design effort, in this last case through comprehensive design guidelines. In order to achieve this goal and after a review of the main concepts of MIMO systems which will be followed used, the spotlight is fixed on finding, implementing and verifying the correctness and accuracy of a base quasi analytical model over which add the necessary enhancements to obtain the sought features of the quasi analytical model proposed. Afterwards and starting from the base quasi analytical model selected, the pattern diversity and spatial multiplexing performance capabilities provided by the multimode behaviour of unloaded microstrip patch antennas under different multipath environments are fully explored. As each cavity mode has its own resonant frequency, it is required to find ways to displace the resonant frequency of each used mode to place them at the same frequency band while keeping each mode as independent as possible. This objective can be accomplished with an appropriate loading of the cavity with reactive loads, or through the alteration of the geometry of the radiation patch. Thus, the focus is set at this point on the design, implementation and verification of a quasi analytical model for the analysis of loaded multimode multiport microstrip patch antennas to carry out the aforementioned task, which is one of the main contributions of this Ph.D. Finally and based on the knowledge acquired through the quasi analytical model, comprehensive guidelines to design reconfigurable multimode MIMO microstrip antennas to improve the spatial multiplexing and/or diversity system performance by means of the multimode microstrip patch antenna behaviour are given and applied. It shall be highlighted that the work presented in this Ph.D. has given rise to a publication in an international technical journal of high impact factor. Moreover, the work has also been presented at some of the most important international conferences in antenna area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using CMOS transistors for terahertz detection is currently a disruptive technology that offers the direct integration of a terahertz detector with video preamplifiers. The detectors are based on the resistive mixer concept and performance mainly depends on the following parameters: type of antenna, electrical parameters (gate to drain capacitor and channel length of the CMOS device) and foundry. Two different 300 GHz detectors are discussed: a single transistor detector with a broadband antenna and a differential pair driven by a resonant patch antenna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A reflectarray antenna with improved performance is proposed to operate in dual-polarization and transmit-receive frequencies in Ku-band for broadcast satellite applications. The reflectarray element contains two orthogonal sets of four coplanar parallel dipoles printed on two surfaces, each set combining lateral and broadside coupling. A 40-cm prototype has been designed, manufactured, and tested. The lengths of the coupled dipoles in the reflectarray cells have been optimized to produce a collimated beam in dual polarization in the transmit and receive bands. The measured radiation patterns confirm the high performance of the antenna in terms of bandwidth (27%), low losses, and low levels of cross polarization. Some preliminary simulations at 11.95 GHz for a 1.2-m antenna with South American coverage are presented to show the potential of the proposed antenna for spaceborne antennas in Ku-band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and characterization process of an active array demonstrator for the mid-frequency range (i.e., 300 MHz-1000 MHz) of the future Square Kilometre Array (SKA) radio telescope. This demonstrator, called FIDA3 (FG-IGN: Fundación General Instituto Geográfico Nacional - Differential Active Antenna Array), is part of the Spanish contribution for the SKA project. The main advantages provided by this design include the use of a dielectric-free structure, and the use of a fully-differential receiver in which differential low-noise amplifiers (LNAs) are directly connected to the balanced tapered-slot antennas (TSAs). First, the radiating structure and the differential low-noise amplifiers were separately designed and measured, obtaining good results (antenna elements with low voltage standing-wave ratios, array scanning capabilities up to 45°, and noise temperatures better than 52 K with low-noise amplifiers at room temperature). The potential problems due to the differential nature of the proposed solution are discussed, so some effective methods to overcome such limitations are proposed. Second, the complete active antenna array receiving system was assembled, and a 1 m2 active antenna array tile was characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized methodology to design low-profile transmitarray (TA) antennas made of several stacked layers with nonresonant printed phasing elements is presented. A study of the unit cell bandwidth, phase-shift range and tolerances has been conducted considering different numbers of layers. A structure with three metalized layers with capacitive and inductive elements enabling a phase range of nearly 360° and low insertion loss is introduced. A study of the four-layer structure shows improvement in the performance of the unit cells in terms of bandwidth from 2% to more than 20% and a complete phase coverage. Implementations on a flexible substrate of TAs with progressive phase shift operating at 19 GHz are used for validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis contributes to the analysis and design of printed reflectarray antennas. The main part of the work is focused on the analysis of dual offset antennas comprising two reflectarray surfaces, one of them acts as sub-reflector and the second one acts as mainreflector. These configurations introduce additional complexity in several aspects respect to conventional dual offset reflectors, however they present a lot of degrees of freedom that can be used to improve the electrical performance of the antenna. The thesis is organized in four parts: the development of an analysis technique for dualreflectarray antennas, a preliminary validation of such methodology using equivalent reflector systems as reference antennas, a more rigorous validation of the software tool by manufacturing and testing a dual-reflectarray antenna demonstrator and the practical design of dual-reflectarray systems for some applications that show the potential of these kind of configurations to scan the beam and to generate contoured beams. In the first part, a general tool has been implemented to analyze high gain antennas which are constructed of two flat reflectarray structures. The classic reflectarray analysis based on MoM under local periodicity assumption is used for both sub and main reflectarrays, taking into account the incident angle on each reflectarray element. The incident field on the main reflectarray is computed taking into account the field radiated by all the elements on the sub-reflectarray.. Two approaches have been developed, one which employs a simple approximation to reduce the computer run time, and the other which does not, but offers in many cases, improved accuracy. The approximation is based on computing the reflected field on each element on the main reflectarray only once for all the fields radiated by the sub-reflectarray elements, assuming that the response will be the same because the only difference is a small variation on the angle of incidence. This approximation is very accurate when the reflectarray elements on the main reflectarray show a relatively small sensitivity to the angle of incidence. An extension of the analysis technique has been implemented to study dual-reflectarray antennas comprising a main reflectarray printed on a parabolic surface, or in general in a curved surface. In many applications of dual-reflectarray configurations, the reflectarray elements are in the near field of the feed-horn. To consider the near field radiated by the horn, the incident field on each reflectarray element is computed using a spherical mode expansion. In this region, the angles of incidence are moderately wide, and they are considered in the analysis of the reflectarray to better calculate the actual incident field on the sub-reflectarray elements. This technique increases the accuracy for the prediction of co- and cross-polar patterns and antenna gain respect to the case of using ideal feed models. In the second part, as a preliminary validation, the proposed analysis method has been used to design a dual-reflectarray antenna that emulates previous dual-reflector antennas in Ku and W-bands including a reflectarray as subreflector. The results for the dualreflectarray antenna compare very well with those of the parabolic reflector and reflectarray subreflector; radiation patterns, antenna gain and efficiency are practically the same when the main parabolic reflector is substituted by a flat reflectarray. The results show that the gain is only reduced by a few tenths of a dB as a result of the ohmic losses in the reflectarray. The phase adjustment on two surfaces provided by the dual-reflectarray configuration can be used to improve the antenna performance in some applications requiring multiple beams, beam scanning or shaped beams. Third, a very challenging dual-reflectarray antenna demonstrator has been designed, manufactured and tested for a more rigorous validation of the analysis technique presented. The proposed antenna configuration has the feed, the sub-reflectarray and the main-reflectarray in the near field one to each other, so that the conventional far field approximations are not suitable for the analysis of such antenna. This geometry is used as benchmarking for the proposed analysis tool in very stringent conditions. Some aspects of the proposed analysis technique that allow improving the accuracy of the analysis are also discussed. These improvements include a novel method to reduce the inherent cross polarization which is introduced mainly from grounded patch arrays. It has been checked that cross polarization in offset reflectarrays can be significantly reduced by properly adjusting the patch dimensions in the reflectarray in order to produce an overall cancellation of the cross-polarization. The dimensions of the patches are adjusted in order not only to provide the required phase-distribution to shape the beam, but also to exploit the crosses by zero of the cross-polarization components. The last part of the thesis deals with direct applications of the technique described. The technique presented is directly applicable to the design of contoured beam antennas for DBS applications, where the requirements of cross-polarisation are very stringent. The beam shaping is achieved by synthesithing the phase distribution on the main reflectarray while the sub-reflectarray emulates an equivalent hyperbolic subreflector. Dual-reflectarray antennas present also the ability to scan the beam over small angles about boresight. Two possible architectures for a Ku-band antenna are also described based on a dual planar reflectarray configuration that provides electronic beam scanning in a limited angular range. In the first architecture, the beam scanning is achieved by introducing a phase-control in the elements of the sub-reflectarray and the mainreflectarray is passive. A second alternative is also studied, in which the beam scanning is produced using 1-bit control on the main reflectarray, while a passive subreflectarray is designed to provide a large focal distance within a compact configuration. The system aims to develop a solution for bi-directional satellite links for emergency communications. In both proposed architectures, the objective is to provide a compact optics and simplicity to be folded and deployed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides the development of an antenna for satellite communications onboard systems based on the recommendations ITU-R S.580-6 [1] and ITU-R S.465-5 [2]. The antenna consists of printed elements grouped in an array, working in a frequency band from 7.25 up to 8.4 GHz (15% of bandwidth). In this working band, transmission and reception are included simultaneously. The antenna reaches a gain about 31 dBi, has a radiation pattern with a beam width smaller than 10oand dual circular polarization. It has the capability to steer in elevation through a Butler matrix to 45

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern communication systems use multifrequency or broadband antennas in order to provide multiple communication services. One of the biggest problems associated to all these systems comes from their batteries life cycle. Nowadays, great efforts are being undertaken in order to harvest energy from as many places as possible. In addition, if the two cycles of the corresponding wave could be used, it would be good in order to increase the RF-DC power conversion. This paper presents a multifrequency and full wave-rectifying antenna for microwave application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A six inputs and three outputs structure which can be used to obtain six simultaneous beams with a triangular array of 3 elements is presented. The beam forming network is obtained combining balanced and unbalanced hybrid couplers and allows to obtain six main beams with sixty degrees of separation in azimuth direction. Simulations and measurements showing the performance of the array and other detailed results are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delay caused by the reflected ray in broadband communication has a great influence on the communications in subway tunnel. This paper presents measurements taken in subway tunnels at 2.4 GHz, with 5 MHz bandwidth. According to propagation characteristics of tunnel, the measurements were carried out with a frequency domain channel sounding technique, in three typical scenarios: line of sight (LOS), Non-line-of-sight (NLOS) and far line of sight (FLOS), which lead to different delay distributions. Firstly IFFT was chosen to get channel impulse response (CIR) h(t) from measured three-dimensional transfer functions. Power delay profile (PDP) was investigated to give an overview of broadband channel model. Thereafter, a long delay caused by the obturation of tunnel is observed and investigated in all the scenarios. The measurements show that the reflection can be greatly remained by the tunnel, which leads to long delay cluster where the reflection, but direct ray, makes the main contribution for radio wave propagation. Four important parameters: distribution of whole PDP power, first peak arriving time, reflection cluster duration and PDP power distribution of reflection cluster were studied to give a detailed description of long delay characteristic in tunnel. This can be used to ensure high capacity communication in tunnels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behavior is analyzed by means of analytical and numerical simulation techniques. It consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid Nitrogen. The main innovative part of the device is the thermal bead between inner and outer conductors, designed for obtaining a proper thermal contact and to keep low both its contribution to the total thermal noise and its reflectivity. A sensitivity analysis is realized in order to fix the manufacturing tolerances for a proper performance in the range 10MHz¿26.5GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behaviour is analysed by means of a novel hybrid analytical?numerical simulation methodology. The standard consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid nitrogen and is designed in order to obtain a low reflectivity and a low uncertainty in the noise temperature. A detailed sensitivity analysis is made in order to highlight the critical characteristics that mostly affect the uncertainty in the noise temperature, and also to determine the manufacturing and operation tolerances for a proper performance in the range 10MHz to 26.5 GHz. Aspects such as the thermal bead design, the level of liquid nitrogen or the uncertainties associated with the temperatures, the physical properties of the materials in the standard and the simulation techniques are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a dual circular polarized steering antenna for satellite communications in X-band is presented. This antenna consists of printed elements grouped in an array, able to work from 7.25 up to 8.4 GHz in both polarizations: left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP). The module antenna is compact, with narrow beamwidth, and reaches a gain of 16 dBi. It has the capability to steer in elevation to and electronically with a Butler matrix. In order to reduce the mutual coupling between adjacent patches, electromagnetic band-gap (EBG) structures are introduced. These EBGs combine double-layer and edge location via in order to reduce the size, without changing the low-permittivity substrate, and therefore maintaining the high radiation efficiency of the antenna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review of Electromagnetic Band Gap (EGB) metamaterials and steering integrated antennas was carried out in IMST GmbH under a short collaboration stay. This activity is in line with Coordinating the Antenna Research in Europe (CARE). The aim is to identify the newest trends, and suggest novel solutions and design methodologies for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.