14 resultados para Breeding colony
em Universidad Politécnica de Madrid
Resumo:
Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4–2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made.
Resumo:
- Need of Tritium production - Neutronic objectives - The Frascati experiment - Measurements of Tritium activity
Resumo:
This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task.
Resumo:
The Darwin theory of evolution by natural selection is based on three principles: (a) variation; (b) inheritance; and (c) natural selection. Here, I take these principles as an excuse to review some topics related to the future research prospects in Animal Breeding. With respect to the first principle I describe two forms of variation different from mutation that are becoming increasingly important: variation in copy number and microRNAs. With respect to the second principle I comment on the possible relevance of non-mendelian inheritance, the so-called epigenetic effects, of which the genomic imprinting is the best characterized in domestic species. Regarding selection principle I emphasize the importance of selection for social traits and how this could contribute to both productivity and animal welfare. Finally, I analyse the impact of molecular biology in Animal Breeding, the achievements and limitations of quantitative trait locus and classical marker-assisted selection and the future of genomic selection
Resumo:
RESUMEN La dispersión del amoniaco (NH3) emitido por fuentes agrícolas en medias distancias, y su posterior deposición en el suelo y la vegetación, pueden llevar a la degradación de ecosistemas vulnerables y a la acidificación de los suelos. La deposición de NH3 suele ser mayor junto a la fuente emisora, por lo que los impactos negativos de dichas emisiones son generalmente mayores en esas zonas. Bajo la legislación comunitaria, varios estados miembros emplean modelos de dispersión inversa para estimar los impactos de las emisiones en las proximidades de las zonas naturales de especial conservación. Una revisión reciente de métodos para evaluar impactos de NH3 en distancias medias recomendaba la comparación de diferentes modelos para identificar diferencias importantes entre los métodos empleados por los distintos países de la UE. En base a esta recomendación, esta tesis doctoral compara y evalúa las predicciones de las concentraciones atmosféricas de NH3 de varios modelos bajo condiciones, tanto reales como hipotéticas, que plantean un potencial impacto sobre ecosistemas (incluidos aquellos bajo condiciones de clima Mediterráneo). En este sentido, se procedió además a la comparación y evaluación de varias técnicas de modelización inversa para inferir emisiones de NH3. Finalmente, se ha desarrollado un modelo matemático simple para calcular las concentraciones de NH3 y la velocidad de deposición de NH3 en ecosistemas vulnerables cercanos a una fuente emisora. La comparativa de modelos supuso la evaluación de cuatro modelos de dispersión (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 y LADD v2010) en un amplio rango de casos hipotéticos (dispersión de NH3 procedente de distintos tipos de fuentes agrícolas de emisión). La menor diferencia entre las concentraciones medias estimadas por los distintos modelos se obtuvo para escenarios simples. La convergencia entre las predicciones de los modelos fue mínima para el escenario relativo a la dispersión de NH3 procedente de un establo ventilado mecánicamente. En este caso, el modelo ADMS predijo concentraciones significativamente menores que los otros modelos. Una explicación de estas diferencias podríamos encontrarla en la interacción de diferentes “penachos” y “capas límite” durante el proceso de parametrización. Los cuatro modelos de dispersión fueron empleados para dos casos reales de dispersión de NH3: una granja de cerdos en Falster (Dinamarca) y otra en Carolina del Norte (EEUU). Las concentraciones medias anuales estimadas por los modelos fueron similares para el caso americano (emisión de granjas ventiladas de forma natural y balsa de purines). La comparación de las predicciones de los modelos con concentraciones medias anuales medidas in situ, así como la aplicación de los criterios establecidos para la aceptación estadística de los modelos, permitió concluir que los cuatro modelos se comportaron aceptablemente para este escenario. No ocurrió lo mismo en el caso danés (nave ventilada mecánicamente), en donde el modelo LADD no dio buenos resultados debido a la ausencia de procesos de “sobreelevacion de penacho” (plume-rise). Los modelos de dispersión dan a menudo pobres resultados en condiciones de baja velocidad de viento debido a que la teoría de dispersión en la que se basan no es aplicable en estas condiciones. En situaciones de frecuente descenso en la velocidad del viento, la actual guía de modelización propone usar un modelo que sea eficaz bajo dichas condiciones, máxime cuando se realice una valoración que tenga como objeto establecer una política de regularización. Esto puede no ser siempre posible debido a datos meteorológicos insuficientes, en cuyo caso la única opción sería utilizar un modelo más común, como la versión avanzada de los modelos Gausianos ADMS o AERMOD. Con el objetivo de evaluar la idoneidad de estos modelos para condiciones de bajas velocidades de viento, ambos modelos fueron utilizados en un caso con condiciones Mediterráneas. Lo que supone sucesivos periodos de baja velocidad del viento. El estudio se centró en la dispersión de NH3 procedente de una granja de cerdos en Segovia (España central). Para ello la concentración de NH3 media mensual fue medida en 21 localizaciones en torno a la granja. Se realizaron también medidas de concentración de alta resolución en una única localización durante una campaña de una semana. En este caso, se evaluaron dos estrategias para mejorar la respuesta del modelo ante bajas velocidades del viento. La primera se basó en “no zero wind” (NZW), que sustituyó periodos de calma con el mínimo límite de velocidad del viento y “accumulated calm emissions” (ACE), que forzaban al modelo a calcular las emisiones totales en un periodo de calma y la siguiente hora de no-calma. Debido a las importantes incertidumbres en los datos de entrada del modelo (inputs) (tasa de emisión de NH3, velocidad de salida de la fuente, parámetros de la capa límite, etc.), se utilizó el mismo caso para evaluar la incertidumbre en la predicción del modelo y valorar como dicha incertidumbre puede ser considerada en evaluaciones del modelo. Un modelo dinámico de emisión, modificado para el caso de clima Mediterráneo, fue empleado para estimar la variabilidad temporal en las emisiones de NH3. Así mismo, se realizó una comparativa utilizando las emisiones dinámicas y la tasa constante de emisión. La incertidumbre predicha asociada a la incertidumbre de los inputs fue de 67-98% del valor medio para el modelo ADMS y entre 53-83% del valor medio para AERMOD. La mayoría de esta incertidumbre se debió a la incertidumbre del ratio de emisión en la fuente (50%), seguida por la de las condiciones meteorológicas (10-20%) y aquella asociada a las velocidades de salida (5-10%). El modelo AERMOD predijo mayores concentraciones que ADMS y existieron más simulaciones que alcanzaron los criterios de aceptabilidad cuando se compararon las predicciones con las concentraciones medias anuales medidas. Sin embargo, las predicciones del modelo ADMS se correlacionaron espacialmente mejor con las mediciones. El uso de valores dinámicos de emisión estimados mejoró el comportamiento de ADMS, haciendo empeorar el de AERMOD. La aplicación de estrategias destinadas a mejorar el comportamiento de este último tuvo efectos contradictorios similares. Con el objeto de comparar distintas técnicas de modelización inversa, varios modelos (ADMS, LADD y WindTrax) fueron empleados para un caso no agrícola, una colonia de pingüinos en la Antártida. Este caso fue empleado para el estudio debido a que suponía la oportunidad de obtener el primer factor de emisión experimental para una colonia de pingüinos antárticos. Además las condiciones eran propicias desde el punto de vista de la casi total ausencia de concentraciones ambiente (background). Tras el trabajo de modelización existió una concordancia suficiente entre las estimaciones obtenidas por los tres modelos. De este modo se pudo definir un factor de emisión de para la colonia de 1.23 g NH3 por pareja criadora por día (con un rango de incertidumbre de 0.8-2.54 g NH3 por pareja criadora por día). Posteriores aplicaciones de técnicas de modelización inversa para casos agrícolas mostraron también un buen compromiso estadístico entre las emisiones estimadas por los distintos modelos. Con todo ello, es posible concluir que la modelización inversa es una técnica robusta para estimar tasas de emisión de NH3. Modelos de selección (screening) permiten obtener una rápida y aproximada estimación de los impactos medioambientales, siendo una herramienta útil para evaluaciones de impactos en tanto que permite eliminar casos que presentan un riesgo potencial de daño bajo. De esta forma, lo recursos del modelo pueden Resumen (Castellano) destinarse a casos en donde la posibilidad de daño es mayor. El modelo de Cálculo Simple de los Límites de Impacto de Amoniaco (SCAIL) se desarrolló para obtener una estimación de la concentración media de NH3 y de la tasa de deposición seca asociadas a una fuente agrícola. Está técnica de selección, basada en el modelo LADD, fue evaluada y calibrada con diferentes bases de datos y, finalmente, validada utilizando medidas independientes de concentraciones realizadas cerca de las fuentes. En general SCAIL dio buenos resultados de acuerdo a los criterios estadísticos establecidos. Este trabajo ha permitido definir situaciones en las que las concentraciones predichas por modelos de dispersión son similares, frente a otras en las que las predicciones difieren notablemente entre modelos. Algunos modelos nos están diseñados para simular determinados escenarios en tanto que no incluyen procesos relevantes o están más allá de los límites de su aplicabilidad. Un ejemplo es el modelo LADD que no es aplicable en fuentes con velocidad de salida significativa debido a que no incluye una parametrización de sobreelevacion del penacho. La evaluación de un esquema simple combinando la sobreelevacion del penacho y una turbulencia aumentada en la fuente mejoró el comportamiento del modelo. Sin embargo más pruebas son necesarias para avanzar en este sentido. Incluso modelos que son aplicables y que incluyen los procesos relevantes no siempre dan similares predicciones. Siendo las razones de esto aún desconocidas. Por ejemplo, AERMOD predice mayores concentraciones que ADMS para dispersión de NH3 procedente de naves de ganado ventiladas mecánicamente. Existe evidencia que sugiere que el modelo ADMS infraestima concentraciones en estas situaciones debido a un elevado límite de velocidad de viento. Por el contrario, existen evidencias de que AERMOD sobreestima concentraciones debido a sobreestimaciones a bajas Resumen (Castellano) velocidades de viento. Sin embrago, una modificación simple del pre-procesador meteorológico parece mejorar notablemente el comportamiento del modelo. Es de gran importancia que estas diferencias entre las predicciones de los modelos sean consideradas en los procesos de evaluación regulada por los organismos competentes. Esto puede ser realizado mediante la aplicación del modelo más útil para cada caso o, mejor aún, mediante modelos múltiples o híbridos. ABSTRACT Short-range atmospheric dispersion of ammonia (NH3) emitted by agricultural sources and its subsequent deposition to soil and vegetation can lead to the degradation of sensitive ecosystems and acidification of the soil. Atmospheric concentrations and dry deposition rates of NH3 are generally highest near the emission source and so environmental impacts to sensitive ecosystems are often largest at these locations. Under European legislation, several member states use short-range atmospheric dispersion models to estimate the impact of ammonia emissions on nearby designated nature conservation sites. A recent review of assessment methods for short-range impacts of NH3 recommended an intercomparison of the different models to identify whether there are notable differences to the assessment approaches used in different European countries. Based on this recommendation, this thesis compares and evaluates the atmospheric concentration predictions of several models used in these impact assessments for various real and hypothetical scenarios, including Mediterranean meteorological conditions. In addition, various inverse dispersion modelling techniques for the estimation of NH3 emissions rates are also compared and evaluated and a simple screening model to calculate the NH3 concentration and dry deposition rate at a sensitive ecosystem located close to an NH3 source was developed. The model intercomparison evaluated four atmospheric dispersion models (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 and LADD v2010) for a range of hypothetical case studies representing the atmospheric dispersion from several agricultural NH3 source types. The best agreement between the mean annual concentration predictions of the models was found for simple scenarios with area and volume sources. The agreement between the predictions of the models was worst for the scenario representing the dispersion from a mechanically ventilated livestock house, for which ADMS predicted significantly smaller concentrations than the other models. The reason for these differences appears to be due to the interaction of different plume-rise and boundary layer parameterisations. All four dispersion models were applied to two real case studies of dispersion of NH3 from pig farms in Falster (Denmark) and North Carolina (USA). The mean annual concentration predictions of the models were similar for the USA case study (emissions from naturally ventilated pig houses and a slurry lagoon). The comparison of model predictions with mean annual measured concentrations and the application of established statistical model acceptability criteria concluded that all four models performed acceptably for this case study. This was not the case for the Danish case study (mechanically ventilated pig house) for which the LADD model did not perform acceptably due to the lack of plume-rise processes in the model. Regulatory dispersion models often perform poorly in low wind speed conditions due to the model dispersion theory being inapplicable at low wind speeds. For situations with frequent low wind speed periods, current modelling guidance for regulatory assessments is to use a model that can handle these conditions in an acceptable way. This may not always be possible due to insufficient meteorological data and so the only option may be to carry out the assessment using a more common regulatory model, such as the advanced Gaussian models ADMS or AERMOD. In order to assess the suitability of these models for low wind conditions, they were applied to a Mediterranean case study that included many periods of low wind speed. The case study was the dispersion of NH3 emitted by a pig farm in Segovia, Central Spain, for which mean monthly atmospheric NH3 concentration measurements were made at 21 locations surrounding the farm as well as high-temporal-resolution concentration measurements at one location during a one-week campaign. Two strategies to improve the model performance for low wind speed conditions were tested. These were ‘no zero wind’ (NZW), which replaced calm periods with the minimum threshold wind speed of the model and ‘accumulated calm emissions’ (ACE), which forced the model to emit the total emissions during a calm period during the first subsequent non-calm hour. Due to large uncertainties in the model input data (NH3 emission rates, source exit velocities, boundary layer parameters), the case study was also used to assess model prediction uncertainty and assess how this uncertainty can be taken into account in model evaluations. A dynamic emission model modified for the Mediterranean climate was used to estimate the temporal variability in NH3 emission rates and a comparison was made between the simulations using the dynamic emissions and a constant emission rate. Prediction uncertainty due to model input uncertainty was 67-98% of the mean value for ADMS and between 53-83% of the mean value for AERMOD. Most of this uncertainty was due to source emission rate uncertainty (~50%), followed by uncertainty in the meteorological conditions (~10-20%) and uncertainty in exit velocities (~5-10%). AERMOD predicted higher concentrations than ADMS and more of the simulations met the model acceptability criteria when compared with the annual mean measured concentrations. However, the ADMS predictions were better correlated spatially with the measurements. The use of dynamic emission estimates improved the performance of ADMS but worsened the performance of AERMOD and the application of strategies to improved model performance had similar contradictory effects. In order to compare different inverse modelling techniques, several models (ADMS, LADD and WindTrax) were applied to a non-agricultural case study of a penguin colony in Antarctica. This case study was used since it gave the opportunity to provide the first experimentally-derived emission factor for an Antarctic penguin colony and also had the advantage of negligible background concentrations. There was sufficient agreement between the emission estimates obtained from the three models to define an emission factor for the penguin colony (1.23 g NH3 per breeding pair per day with an uncertainty range of 0.8-2.54 g NH3 per breeding pair per day). This emission estimate compared favourably to the value obtained using a simple micrometeorological technique (aerodynamic gradient) of 0.98 g ammonia per breeding pair per day (95% confidence interval: 0.2-2.4 g ammonia per breeding pair per day). Further application of the inverse modelling techniques for a range of agricultural case studies also demonstrated good agreement between the emission estimates. It is concluded, therefore, that inverse dispersion modelling is a robust technique for estimating NH3 emission rates. Screening models that can provide a quick and approximate estimate of environmental impacts are a useful tool for impact assessments because they can be used to filter out cases that potentially have a minimal environmental impact allowing resources to be focussed on more potentially damaging cases. The Simple Calculation of Ammonia Impact Limits (SCAIL) model was developed as a screening model to provide an estimate of the mean NH3 concentration and dry deposition rate downwind of an agricultural source. This screening tool, based on the LADD model, was evaluated and calibrated with several experimental datasets and then validated using independent concentration measurements made near sources. Overall SCAIL performed acceptably according to established statistical criteria. This work has identified situations where the concentration predictions of dispersion models are similar and other situations where the predictions are significantly different. Some models are simply not designed to simulate certain scenarios since they do not include the relevant processes or are beyond the limits of their applicability. An example is the LADD model that is not applicable to sources with significant exit velocity since the model does not include a plume-rise parameterisation. The testing of a simple scheme combining a momentum-driven plume rise and increased turbulence at the source improved model performance, but more testing is required. Even models that are applicable and include the relevant process do not always give similar predictions and the reasons for this need to be investigated. AERMOD for example predicts higher concentrations than ADMS for dispersion from mechanically ventilated livestock housing. There is evidence to suggest that ADMS underestimates concentrations in these situations due to a high wind speed threshold. Conversely, there is also evidence that AERMOD overestimates concentrations in these situations due to overestimation at low wind speeds. However, a simple modification to the meteorological pre-processor appears to improve the performance of the model. It is important that these differences between the predictions of these models are taken into account in regulatory assessments. This can be done by applying the most suitable model for the assessment in question or, better still, using multiple or hybrid models.
Resumo:
The aim of this work was to evaluate different management strategies to optimize rabbit production under chronic heat stress. To achieve it, three trials were conducted. In the first trial, to find the optimal cage density in tropical very dry forest condition, were measured growth performance, mortality rate, injured animals and carcass performance over an initial population of 300 cross-breed rabbits of New Zealand, California, Butterfly, Dutch and Satin, weaned at 30 days (535 ± 8 g, standard error). Treatments evaluated were: 6, 12, 18 and 24 rabbits/m2 (3, 6, 9 and 12 rabbits/cage, respectively, each cage of 0.5 m2). The maximal temperature-humidity index indicated a severe heat stress from weaning to 2.2 kg body weight (experimental time). At the end of experimental period 10, 20, 30 and 30 rabbits from the treatments of 6, 12, 18 and 24 rabbits/m2, respectively, were slaughtered and carcass performance recorded. Average daily gain and feed intake decreased by 0.31 ± 0.070 and 1.20 ± 0.25 g, respectively, per each unit that the density increased at the beginning of the experiment (P = 0.001). It increased the length of the fattening period by 0.91 ± 0.16 d (P = 0.001) per each unit of increment of density. However, rabbit production (kg/m2) increased linear and quadratically with the density (P < 0.008). Animals housed at the highest density compared to the lower one tended to show a higher incidence of ringworm (68.9 vs 39.4%; P = 0.075), injured animals (16.8 vs 3.03%; P = 0.12) and mortality (20.5 vs 9.63%; P = 0.043). The proportion of scapular fat (P = 0.042) increased linearly with increasing levels of density. Increasing density reduced linearly dorsal length (P = 0.001), and reduced linear and quadratically drip loss percentage (P = 0.097 and 0.018, respectively). In the second trial, 46 nulliparous rabbit does (23 clipped and 23 unclipped) with a BW of 3.67 ± 0.05 kg (s.e.) were used to evaluate heat stress and circadian rhythms comparing unclipped and clipped rabbit does, and to study if a more extensive breeding system increase litters performance at weaning without impairing rabbit doe performance,. Rectal temperature, feed and water 4 intake were recorded for 24 h. Rabbit does were mated 7 d after circadian measurements, and randomly assigned to two breeding systems. Control (C): mated at 14 d after parturition + litter weaned at 35 d of age. Extensive (E): mate at 21 after parturition + litter weaned at 42 d of age. The first three cycles were evaluated concerning to rabbit doe and litter performance. Two hundred twenty eight weaned rabbits, were divided into two cage sizes: 0.5 and 0.25 m2 with same density (16 rabbit/m2) and growing performance was recorded. Farm and rectal temperatures were minimal and feed and water intake maximal during the night (P < 0.001). Unclipped rabbit does showed higher rectal temperature (P = 0.045) and lower feed intake respect to clipped does (P = 0.019) which suggest a lower heat stress in the latter. Kits weaned per litter was reduced by 33% (P=0.038) in C group. This reduction was more important in the 2nd and 3rd cycles compared to the first (P ≤ 0.054). Rabbit doe feed efficiency tended to decrease in E respect C group (P = 0.093), whereas it was impaired from the first to the third cycle by 48% (P = 0.014). Growing rabbits from the E group were heavier at weaning (by 38%. P < 0.001), showed a higher feed intake (+7.4%) and lower feed efficiency (-8.4%) throughout the fattening period (P ≤ 0.056) respect to C group. Cage size had minor influence in growing performance. In the third trial, forty five non pregnant and non lactating rabbit does (21 nulliparous and 24 multiparous) were assigned randomly to farm water and to potable water to study if a water quality improvement can affect positively rabbit doe response to heat stress during pregnancy and lactation. A transponder was implanted in each animal to record subcutaneous temperature at 07:30 and 14:30 h. Experimental period extended from pregnancy (with no lactation) to the next lactation (until day 28). Body temperature and milk production were recorded daily, and body condition, feed and water intake weekly. Water quality did not affect any trait (P ≥ 0.15). Pregnant rabbit does were classified as does that weaned (W: 47%), not weaned (NW: 44%) or those pregnant that did not deliver (NB: 9%). Body temperature and feed intake decreased during pregnancy (P ≤ 0.031), but water intake remained constant. In this period body temperature decreased with metabolic weight (P ≤ 0.009). In W and NW does, 5 from mating to birth energy and protein balance impaired (P≤0.011). Body temperature of W does tended to be the lowest (P ≤ 0.090). Pregnancy length and total number of kits born tended to be longer and higher in NW than in W does (P = 0.10 and 0.053, respectively). Kit mortality at birth and from birth to 14 d of lactation was high, being worse for NW than for W does (97 vs. 40%; P<0.001). Body temperature during lactation was maximal at day 12, and milk production increased it (P ≤ 0.025). . In conclusion, in our heat stress conditions densities higher than 18 rabbits/m2 (34 kg/m2) at the end of fattening, are not recommended despite cage size, gestation and lactation productivity impaired not only when lactation is extended and along successive reproductive cycles but also due to a reduced embryo/kit survival and finally water quality improvement did not attenuate negative effect of heat stress. RESUMEN El propósito de éste trabajo fue evaluar diferentes estrategias de manejo para optimizar la producción de conejos bajo estrés térmico. Para lo cual se desarrollaron tres experimentos. En el primer experimento, para encontrar el número óptimo de gazapos por m2 de jaula durante el cebo en condiciones de bosque muy seco tropical, se estudiaron los rendimientos durante el cebo, mortalidad, animales lesionados y rendimiento de la canal sobre una población inicial de 300 conejos mestizos de Nueva Zelanda, California, Mariposa, Holandés y Satin, destetados a los 30 días de edad (535 ± 8g, error estándar). Los tratamientos evaluados fueron: 6, 12, 18 y 24 conejos/m2 (3, 6, 9 y 12 conejos/jaula, respectivamente, en jaulas de 0.5 m2). Durante el período experimental (destete a 2.2 kg de peso vivo), se observaron valores de THI correspondientes con un estrés térmico severo (THI max. De 31 a 35). Al final del período experimental, 10, 20, 30, y 30 conejos de los tratamientos con densidades de 6, 12, 18 y 24 conejos/m2, respectivamente, fueron sacrificados y su canal fue valorada. El promedio de la ganancia diaria y el consumo de alimento disminuyeron en 0.31 ± 0.070 y 1.20 ± 0.25 g, respectivamente, por cada unidad de incremento en la densidad al inicio del experimento (P=0.001). Esto alargó el período de engorde en 0.91 ± 0.16 d (P=0.001) por cada unidad de incremento de la densidad. Sin embargo, la producción de conejos (kg/m2) aumentó lineal y cuadráticamente con la densidad (P<0.008). Los animales alojados en las mayores densidades en comparación con el resto tendieron a mostrar una mayore incidencia de tiña (68.9 vs 39.4%; P=0.075), de cantidad de animales heridos (16.8 vs 3.03%; P=0.12), así como de mortalidad (20.5 vs 9.63%; P=0.043). El aumento en la densidad aumentó linealmente la proporción de grasa escapular (P=0.042) y redujo linealmente la longitud dorsal (P=0.001), y lineal y cuadráticamente el porcentaje de pérdida por goteo (P=0.018). En el segundo experimento, 46 conejas nulliparas (23 rasuradas y 23 no rasuradas) con un peso vivo de 3.67 ± 0.05 kg (e.e.) fueron usadas para evaluar el estrés 8 térmico y los ritmos circadianos comparando conejas rasuradas o no, y estudiar si un sistema de crianza más extensivo mejora el desempeño de la camada al destete sin perjudicar la productividad de la coneja. Durante 24 h se midió la temperatura rectal, consumo de alimento y de agua. Las conejas fueron montadas 7 días después, y distribuidas en dos sistemas de crianza. El control (C): monta a 14 días posparto y destete a 35 d de edad. El extensivo (E): monta a 21 días posparto y destete a 42 d de edad. Se controló la productividad de la coneja y la camada durante los tres primeros ciclos. Doscientos veintiocho gazapos fueron distribuidos en dos tamaños de jaulas (0.5 y 0.25 m2) con la misma densidad (16 conejos/m2) y se controlaron sus rendimientos productivos. Durante la noche se observaron los valores mínimos para la temperatura ambiental y rectal, y los máximos para consumo de alimento y agua (P< 0.001). Las conejas no rasuradas mostraron mayor temperatura rectal (P=0.045) y menores valores de consumo de alimento con respecto a las conejas rasuradas (P=0.019), lo que sugiere un menor estrés térmico en las últimas. El número de gazapos destetados por camada se redujo en 33% (P=0.038) en el grupo C. Este comportamiento se acentuó en el 2do y 3er ciclo en comparación con el primero (P≤0.054). La eficiencia alimenticia de las conejas tendió a disminuir en el grupo E con respecto al grupo C (P=0.093), dicha tendencia se acentúa del primer al tercer ciclo en un 48% (P=0.014). Los gazapos en fase de crecimiento provenientes del grupo E fueron más pesados al momento del destete (en 38% P<0.001), mostrando un mayor consumo de alimento (+7.4%) y menor eficiencia alimenticia (-8.4%) a lo largo del engorde (P≤0.056) con respecto al grupo C. El tamaño de la jaula tuvo una mínima influencia en el comportamiento durante el crecimiento de éstos gazapos. En el tercer experimento, cuarenta y cinco conejas no gestantes ni lactantes (21 nulíparas y 24 multíparas) se les asignó al azar agua dos tipos de agua: común de la granja y agua potable, con el fin de estudiar si una mejora en la calidad del agua puede afectar positivamente la respuesta de la coneja al estrés térmico durante la gestación y la lactancia. Se les implantó un transponder para registrar la temperatura subcutánea a las 7:30 y a las 14:30 h. El período experimental se extendió desde la gestación (sin 9 lactancia) hasta la lactanción consecutiva (hasta los 28 días). La temperatura corporal y la producción de leche se controlaron diariamente, y la condición corporal, consumo de agua y alimento, semanalmente. La calidad del agua no afectó a ninguna variable (P≥0.15). Las conejas preñadas fueron clasificadas como conejas que destetaron (W: 47%), que no destetaron (NW:44%) o aquellas que no parieron (NB: 9%). La temperatura corporal y consumo de alimento disminuyeron durante la gestación (P≤0.031), mientras que el consumo de agua se mantuvo constante. La temperatura corporal descendió con el peso metabólico durante la gestación (P≤0.009). El balance de energía y proteína disminuyó desde la monta al parto para las conejas W y NW (P≤0.011). Durante la gestación la temperatura corporal tendió a ser menor en las conejas W (P≤0.090). La longitud de la gestación y el número total de gazapos nacidos tendieron a ser mayores en conejas NW que en conejas W (P=0.10 y 0.053, respectivamente). La mortalidad de los gazapos al parto y del parto a los 14 días de lactancia fue alta, siendo peor para las conejas NW que para las W (97 vs 40%; P<0.001). Durante la lactancia la temperatura corporal alcanzó su valor máximo para el día 12, y la producción de leche indujo un incremento en la misma (P≤0.025). En conclusión, en nuestras condiciones de estrés térmico y sin importar el tamaño de la jaula, no se recomiendan densidades mayores a 18 conejos/m2 (34 kg/m2) al final del engorde. La productividad de la gestación y la lactancia disminuyen cuando la lactancia es mayor y se suceden varios ciclos reproductivos seguidos. Esto se debe al efecto negativo del estrés térmico sobre la vitalidad y supervivencia del embrión/gazapo. La mejora de la calidad del agua atenuó el efecto negativo del estrés térmico. Las conejas más productoras parece que son aquéllas que consiguen manejar mejor el estrés térmico.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
In this work, we consider the Minimum Weight Pseudo-Triangulation (MWPT) problem of a given set of n points in the plane. Globally optimal pseudo-triangulations with respect to the weight, as optimization criteria, are difficult to be found by deterministic methods, since no polynomial algorithm is known. We show how the Ant Colony Optimization (ACO) metaheuristic can be used to find high quality pseudo-triangulations of minimum weight. We present the experimental and statistical study based on our own set of instances since no reference to benchmarks for these problems were found in the literature. Throughout the experimental evaluation, we appraise the ACO metaheuristic performance for MWPT problem.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
In this study, we present a framework based on ant colony optimization (ACO) for tackling combinatorial problems. ACO algorithms have been applied to many diferent problems, focusing on algorithmic variants that obtain high-quality solutions. Usually, the implementations are re-done for various problem even if they maintain the same details of the ACO algorithm. However, our goal is to generate a sustainable framework for applications on permutation problems. We concentrate on understanding the behavior of pheromone trails and specific methods that can be combined. Eventually, we will propose an automatic offline configuration tool to build an efective algorithm. ---RESUMEN---En este trabajo vamos a presentar un framework basado en la familia de algoritmos ant colony optimization (ACO), los cuales están dise~nados para enfrentarse a problemas combinacionales. Los algoritmos ACO han sido aplicados a diversos problemas, centrándose los investigadores en diversas variantes que obtienen buenas soluciones. Normalmente, las implementaciones se tienen que rehacer, inclusos si se mantienen los mismos detalles para los algoritmos ACO. Sin embargo, nuestro objetivo es generar un framework sostenible para aplicaciones sobre problemas de permutaciones. Nos centraremos en comprender el comportamiento de la sendas de feromonas y ciertos métodos con los que pueden ser combinados. Finalmente, propondremos una herramienta para la configuraron automática offline para construir algoritmos eficientes.
Resumo:
This paper presents an ant colony optimization algorithm to sequence the mixed assembly lines considering the inventory and the replenishment of components. This is a NP-problem that cannot be solved to optimality by exact methods when the size of the problem growth. Groups of specialized ants are implemented to solve the different parts of the problem. This is intended to differentiate each part of the problem. Different types of pheromone structures are created to identify good car sequences, and good routes for the replenishment of components vehicle. The contribution of this paper is the collaborative approach of the ACO for the mixed assembly line and the replenishment of components and the jointly solution of the problem.
Resumo:
The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program.
Resumo:
Two scientific schools have been in coexistence from the beginning of genetics, one of them searching for factors of inheritance and the other one applying biometrical models to study the relationships between relatives. With the development of molecular genetics, the possibilities of detecting genes having a noticeable effect in traits augmented. Some genes with large or medium effects were localized in animals, although the most common result was to detect markers linked to these genes, allowing the possibility of assisting selection programs with markers. When a large amount of simple and inexpensive markers were available, the SNPs, new possibilities were opened since they did not need the presence of genes of large or medium effect controlling a trait, because the whole genome was scanned. Using a large amount of SNPs permits having a prediction of the breeding value at birth accurate enough to be used in some cases, like dairy cattle, to halve its generation interval. In other animal breeding programs, the implementation of genomic selection is less clear and the way in which it can be useful should be carefully studied. The need for large populations for associating phenotypic data and markers, plus the need for repeating the process continuously, complicates its application in some cases. The implementation of the information provided by the SNPs in current genetic programs has led to the development of complex statistical tools, joining the efforts of the two schools, factorial and biometrical, that nowadays work closely related.
Resumo:
One of the main problems relief teams face after a natural or man-made disaster is how to plan rural road repair work tasks to take maximum advantage of the limited available financial and human resources. Previous research focused on speeding up repair work or on selecting the location of health centers to minimize transport times for injured citizens. In spite of the good results, this research does not take into account another key factor: survivor accessibility to resources. In this paper we account for the accessibility issue, that is, we maximize the number of survivors that reach the nearest regional center (cities where economic and social activity is concentrated) in a minimum time by planning which rural roads should be repaired given the available financial and human resources. This is a combinatorial problem since the number of connections between cities and regional centers grows exponentially with the problem size, and exact methods are no good for achieving an optimum solution. In order to solve the problem we propose using an Ant Colony System adaptation, which is based on ants? foraging behavior. Ants stochastically build minimal paths to regional centers and decide if damaged roads are repaired on the basis of pheromone levels, accessibility heuristic information and the available budget. The proposed algorithm is illustrated by means of an example regarding the 2010 Haiti earthquake, and its performance is compared with another metaheuristic, GRASP.