4 resultados para Bounds
em Universidad Politécnica de Madrid
Resumo:
We present a static analysis that infers both upper and lower bounds on the usage that a logic program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower-bound) resource usage functions for all predicates in the program. We also present an assertion language which is used to define both such resources and resourcerelated properties that the system can then check based on the results of the analysis. We have performed some preliminary experiments with some concrete resources such as execution steps, bytes sent or received by an application, number of files left open, number of accesses to a datábase, number of calis to a procedure, number of asserts/retracts, etc. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certiflcation of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually application-dependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a datábase, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-deflnable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these deflnitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering a signiflcant set of interesting resources.
Resumo:
Abstract is not available.
Resumo:
We present a generic analysis that infers both upper and lower bounds on the usage that a program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower- bound) cost functions for all procedures in the program. We also present an assertion language which is used to define both such resources and resource-related properties that the system can then check based on the results of the analysis. We have performed some experiments with some concrete resource-related properties such as execution steps, bits sent or received by an application, number of arithmetic operations performed, number of calls to a procedure, number of transactions, etc. presenting the resource usage functions inferred and the times taken to perform the analysis. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization.