8 resultados para Bombay Harbour
em Universidad Politécnica de Madrid
Resumo:
The research that is summarized in this article, resultant of diverse studies realized in the CEDEX, has for object a comparative analysis of methods of overtopping rates developed by different authors. For that, the summary was realized first and the analysis of the existing formulations to estimate the rate of overtopping on rubble mound and vertical breakwaters. Later, there was carried out the contrast of the above mentioned formulations by the results obtained in a serie of hydraulic model tests of the Hydraulic Research Laboratory (the Center of Studies of Ports and Coasts of the CEDEX, Madrid, Spain).
Resumo:
The purpose of the research work resulting from various studies undertaken in the CEDEX, as summarized in this article, is to make a comparative analysis of methods for calculating overtopping rates developed by different authors. To this effect, in the first place, existing formulas for estimating the overtopping rate on rubble mound and vertical breakwaters were summarised and analysed. Later, the above mentioned formulas were compared using the results obtained in a series of hydraulic model tests at the CEDEX. The results obtained in the Ferrol outer harbour breakwater and Melilla harbour breakwater tests are presented here. A calculation method based on the neural network theory, developed in the European CLASH Project, was applied to a series of sloping breakwater tests in order to complete this research and the results obtained in the Ferrol outer harbour breakwater test are presented in this article. A series of additional tests was also carried out in a physical model on the standard cross section of the Bilbao harbour sloping breakwater’s cross section, the results of which are under study using the empirical formulas applicable to the cross section, as well as the NN-OVERTOPPING neural network
Resumo:
The purpose of the research work resulting from various studies undertaken in the CEDEX, as summarized in this article, is to make a comparative analysis of methods for calculating overtopping rates developed by different authors. To this effect, in the first place, existing formulae for estimating the overtopping rate on rubble mound and vertical breakwaters were summarised and analysed. Later, the above mentioned formulae were compared using the results obtained in a series of hydraulic model tests at the CEDEX (the Center of Studies of Ports and Coasts of the CEDEX, Madrid, Spain). A calculation method based on the neural network theory, developed in the European CLASH Project, was applied to a series of sloping breakwater tests in order to complete this research. The results obtained in the Ferrol, Ciervana and Alicante breakwaters tests are presented here.
Resumo:
This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model
Resumo:
An analysis of a stretch of coastline shows multiple alterations through environmental climate actions. The narrow, fragile line displays singularities due to three basic causes. The first is the discontinuity in feed or localised loss of solid coastal material. Called massics, their simplest examples are deltas and undersea canyons. The second is due to a brusque change in the alignment of the shoreline’s edge, headlands, groins, harbour and defence works. Given the name of geometric singularities, their simplest uses are artificial beaches in the shelter of a straight groin or spits. The third is due to littoral dynamics, emerged or submerged obstacles which diffract and refract wave action, causing a change in the sea level’s super-elevation in breaker areas. Called dynamics, the simplest examples are salients, tombolos and shells. Discussion of the causes giving rise to variations in the coastline and formation of singularities is the raison d’être of investigation, using actual cases to check the suitability of the classification proposed, the tangential or differential action of waves on the coastal landscape in addition to possible simple, compound and complex shapes detected in nature, both in erosion and deposit processes
Resumo:
A maritime construction is usually a slender line in the ocean.It is usual to see just its narrow surface strip and not analyse the large amount of submerged material the latter is supporting.Without doubt,it is the ground to which a notable load is transmitted in an environment subjected to periodic,alternating stresses,dynamic forces which the sea's media constitute. Both an outer and inner maritime construction works in a complex fashion.A granular solid(breakwater)breathes with the incident wave flow,dissipating part of the wave energy between its gaps.The backflow tries to extract the different items from the solid block,setting a balance between effective and neutral tensions that follow Terzaghui's principle. On some occasions,fluidification of the armour layer has caused the breakwater to collapse(Sines,Portugal,February 1978).On others,siphoning or liquefaction of sand supporting monoliths(vertical breakwaters)lead them to destruction or collapse(New Barcelona Harbour Mouth,Spain,November 2001). This is why the ground-force-structure interaction is a complicated analysis with joint design tools still in an incipient state. The purpose of this article is to describe two singular failures in inner maritime constructions in Spain deriving from ground problems(Malaga,July 2004and Barcelona,January 2007).They occurred recently and the causes are the subject of reflection and analysis.
Resumo:
Identification and tracking of objects in specific environments such as harbors or security areas is a matter of great importance nowadays. With this purpose, numerous systems based on different technologies have been developed, resulting in a great amount of gathered data displayed through a variety of interfaces. Such amount of information has to be evaluated by human operators in order to take the correct decisions, sometimes under highly critical situations demanding both speed and accuracy. In order to face this problem we describe IDT-3D, a platform for identification and tracking of vessels in a harbour environment able to represent fused information in real time using a Virtual Reality application. The effectiveness of using IDT-3D as an integrated surveillance system is currently under evaluation. Preliminary results point to a significant decrease in the times of reaction and decision making of operators facing up a critical situation. Although the current application focus of IDT-3D is quite specific, the results of this research could be extended to the identification and tracking of targets in other controlled environments of interest as coastlines, borders or even urban areas.
Resumo:
El rebase se define como el transporte de una cantidad importante de agua sobre la coronación de una estructura. Por tanto, es el fenómeno que, en general, determina la cota de coronación del dique dependiendo de la cantidad aceptable del mismo, a la vista de condicionantes funcionales y estructurales del dique. En general, la cantidad de rebase que puede tolerar un dique de abrigo desde el punto de vista de su integridad estructural es muy superior a la cantidad permisible desde el punto de vista de su funcionalidad. Por otro lado, el diseño de un dique con una probabilidad de rebase demasiado baja o nula conduciría a diseños incompatibles con consideraciones de otro tipo, como son las estéticas o las económicas. Existen distintas formas de estudiar el rebase producido por el oleaje sobre los espaldones de las obras marítimas. Las más habituales son los ensayos en modelo físico y las formulaciones empíricas o semi-empíricas. Las menos habituales son la instrumentación en prototipo, las redes neuronales y los modelos numéricos. Los ensayos en modelo físico son la herramienta más precisa y fiable para el estudio específico de cada caso, debido a la complejidad del proceso de rebase, con multitud de fenómenos físicos y parámetros involucrados. Los modelos físicos permiten conocer el comportamiento hidráulico y estructural del dique, identificando posibles fallos en el proyecto antes de su ejecución, evaluando diversas alternativas y todo esto con el consiguiente ahorro en costes de construcción mediante la aportación de mejoras al diseño inicial de la estructura. Sin embargo, presentan algunos inconvenientes derivados de los márgenes de error asociados a los ”efectos de escala y de modelo”. Las formulaciones empíricas o semi-empíricas presentan el inconveniente de que su uso está limitado por la aplicabilidad de las fórmulas, ya que éstas sólo son válidas para una casuística de condiciones ambientales y tipologías estructurales limitadas al rango de lo reproducido en los ensayos. El objetivo de la presente Tesis Doctoral es el contrate de las formulaciones desarrolladas por diferentes autores en materia de rebase en distintas tipologías de diques de abrigo. Para ello, se ha realizado en primer lugar la recopilación y el análisis de las formulaciones existentes para estimar la tasa de rebase sobre diques en talud y verticales. Posteriormente, se llevó a cabo el contraste de dichas formulaciones con los resultados obtenidos en una serie de ensayos realizados en el Centro de Estudios de Puertos y Costas. Para finalizar, se aplicó a los ensayos de diques en talud seleccionados la herramienta neuronal NN-OVERTOPPING2, desarrollada en el proyecto europeo de rebases CLASH (“Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtopping”), contrastando de este modo la tasa de rebase obtenida en los ensayos con este otro método basado en la teoría de las redes neuronales. Posteriormente, se analizó la influencia del viento en el rebase. Para ello se han realizado una serie de ensayos en modelo físico a escala reducida, generando oleaje con y sin viento, sobre la sección vertical del Dique de Levante de Málaga. Finalmente, se presenta el análisis crítico del contraste de cada una de las formulaciones aplicadas a los ensayos seleccionados, que conduce a las conclusiones obtenidas en la presente Tesis Doctoral. Overtopping is defined as the volume of water surpassing the crest of a breakwater and reaching the sheltered area. This phenomenon determines the breakwater’s crest level, depending on the volume of water admissible at the rear because of the sheltered area’s functional and structural conditioning factors. The ways to assess overtopping processes range from those deemed to be most traditional, such as semi-empirical or empirical type equations and physical, reduced scale model tests, to others less usual such as the instrumentation of actual breakwaters (prototypes), artificial neural networks and numerical models. Determining overtopping in reduced scale physical model tests is simple but the values obtained are affected to a greater or lesser degree by the effects of a scale model-prototype such that it can only be considered as an approximation to what actually happens. Nevertheless, physical models are considered to be highly useful for estimating damage that may occur in the area sheltered by the breakwater. Therefore, although physical models present certain problems fundamentally deriving from scale effects, they are still the most accurate, reliable tool for the specific study of each case, especially when large sized models are adopted and wind is generated Empirical expressions obtained from laboratory tests have been developed for calculating the overtopping rate and, therefore, the formulas obtained obviously depend not only on environmental conditions – wave height, wave period and water level – but also on the model’s characteristics and are only applicable in a range of validity of the tests performed in each case. The purpose of this Thesis is to make a comparative analysis of methods for calculating overtopping rates developed by different authors for harbour breakwater overtopping. First, existing equations were compiled and analysed in order to estimate the overtopping rate on sloping and vertical breakwaters. These equations were then compared with the results obtained in a number of tests performed in the Centre for Port and Coastal Studies of the CEDEX. In addition, a neural network model developed in the European CLASH Project (“Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtopping“) was also tested. Finally, the wind effects on overtopping are evaluated using tests performed with and without wind in the physical model of the Levante Breakwater (Málaga).