3 resultados para Biometric applications

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying biometrics to daily scenarios involves demanding requirements in terms of software and hardware. On the contrary, current biometric techniques are also being adapted to present-day devices, like mobile phones, laptops and the like, which are far from meeting the previous stated requirements. In fact, achieving a combination of both necessities is one of the most difficult problems at present in biometrics. Therefore, this paper presents a segmentation algorithm able to provide suitable solutions in terms of precision for hand biometric recognition, considering a wide range of backgrounds like carpets, glass, grass, mud, pavement, plastic, tiles or wood. Results highlight that segmentation accuracy is carried out with high rates of precision (F-measure 88%)), presenting competitive time results when compared to state-of-the-art segmentation algorithms time performance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activity recognition is an active research field nowadays, as it enables the development of highly adaptive applications, e.g. in the field of personal health. In this paper, a light high-level fusion algorithm to detect the activity that an individual is performing is presented. The algorithm relies on data gathered from accelerometers placed on different parts of the body, and on biometric sensors. Inertial sensors allow detecting activity by analyzing signal features such as amplitude or peaks. In addition, there is a relationship between the activity intensity and biometric response, which can be considered together with acceleration data to improve the accuracy of activity detection. The proposed algorithm is designed to work with minimum computational cost, being ready to run in a mobile device as part of a context-aware application. In order to enable different user scenarios, the algorithm offers best-effort activity estimation: its quality of estimation depends on the position and number of the available inertial sensors, and also on the presence of biometric information.