8 resultados para Biomedicina farmacêutica
em Universidad Politécnica de Madrid
Resumo:
En este discurso de ingreso se destacó la importancia de la Mecánica de Materiales y el Modelado Matemático en Biomedicina y, en particular, se mostraron algunas aportaciones relacionadas con el comportamiento funcional de tejidos biológicos. Más en concreto se discutió la importancia de la transdisciplinariedad en la investigación actual y el papel que en esa búsqueda de un lenguaje común entre disciplinas tienen el modelado matemático y la simulación computacional.En particular, en la nueva Biomedicina basada en la evidencia, la interacción transdisciplinar es esencial, como lo demuestran resultados tan evidentes como los dispositivos e implantes inteligentes, las nuevas técnicas de imagen médica, la aparición de órganos artificiales o las crecientemente importantes técnicas de Ingeniería Tisular y Terapias Génica y Celular. Uno de los aspectos de creciente estudio en los últimos años es la epigenética, es decir, el estudio de la influencia del entorno específico de cada individuo en su respuesta biológica. Uno de estos estímulos externos, que se está constatando como fundamental, corresponde a las deformaciones, y ello en todas las escalas: molecular, celular, tisular y orgánica, dando lugar a una nueva subdisciplina: la Mecanobiología de creciente interés. En ella se acoplan los fenómenos mecánicos (movimiento, deformaciones, tensiones,..) con los biológicos (respuesta celular, expresión génica, adaptación tisular, regeneración y morfogénesis orgánica, etc.) y, en general, con otros campos físicos como la bioquímica o la electricidad también acoplados en los procesos de señalización y expresión celular. De nuevo el modelado multiescala y multifísico de estos problemas es esencial en su comprensión última y en el diseño de nuevas estrategias quirúrgicas, terapéuticas o de diagnostico. En este discurso se mostraron los problemas y posibilidades de estas metodologías y su aplicación en problemas tales como el diseño de implantes, la remodelación reparación y morfogénesis óseas, así como en la planificación preoperatoria y cirugía virtual.
Resumo:
En el campo de la biomedicina se genera una inmensa cantidad de imágenes diariamente. Para administrarlas es necesaria la creación de sistemas informáticos robustos y ágiles, que necesitan gran cantidad de recursos computacionales. El presente artículo presenta un servicio de cloud computing capaz de manejar grandes colecciones de imágenes biomédicas. Gracias a este servicio organizaciones y usuarios podrían administrar sus imágenes biomédicas sin necesidad de poseer grandes recursos informáticos. El servicio usa un sistema distribuido multi agente donde las imágenes son procesadas y se extraen y almacenan en una estructura de datos las regiones que contiene junto con sus características. Una característica novedosa del sistema es que una misma imagen puede ser dividida, y las sub-imágenes resultantes pueden ser almacenadas por separado por distintos agentes. Esta característica ayuda a mejorar el rendimiento del sistema a la hora de buscar y recuperar las imágenes almacenadas.
Resumo:
Los nanomateriales han adquirido recientemente un gran interés debido a la gran con el diagnóstico como con la terapia de enfermedades muy variadas. Dentro de los nanomateriales utilizados en biomedicina, concretamente las nanopartículas magnéticas (NPMs) muestran un interés especial por las como agente de contraste en imagen de resonancia magnética (RM) y por tanto ser de gran utilidad en el diagnóstico de diferentes patologías. Otra de las aplicaciones potenciales de las NPMs en biomedicina se encuentra en el ámbito de la terapia, por ejemplo, la destrucción de tumores mediante hipertermia al aprovecharse la capacidad que poseen las partículas para producir calor en respuesta a la aplicación de campos magnéticos externos.
Resumo:
RESUMEN Las enfermedades cardiovasculares constituyen en la actualidad la principal causa de mortalidad en el mundo y se prevé que sigan siéndolo en un futuro, generando además elevados costes para los sistemas de salud. Los dispositivos cardiacos implantables constituyen una de las opciones para el diagnóstico y el tratamiento de las alteraciones del ritmo cardiaco. La investigación clínica con estos dispositivos alcanza gran relevancia para combatir estas enfermedades que tanto afectan a nuestra sociedad. Tanto la industria farmacéutica y de tecnología médica, como los propios investigadores, cada día se ven involucrados en un mayor número de proyectos de investigación clínica. No sólo el incremento en su volumen, sino el aumento de la complejidad, están generando mayores gastos en las actividades asociadas a la investigación médica. Esto está conduciendo a las compañías del sector sanitario a estudiar nuevas soluciones que les permitan reducir los costes de los estudios clínicos. Las Tecnologías de la Información y las Comunicaciones han facilitado la investigación clínica, especialmente en la última década. Los sistemas y aplicaciones electrónicos han proporcionado nuevas posibilidades en la adquisición, procesamiento y análisis de los datos. Por otro lado, la tecnología web propició la aparición de los primeros sistemas electrónicos de adquisición de datos, que han ido evolucionando a lo largo de los últimos años. Sin embargo, la mejora y perfeccionamiento de estos sistemas sigue siendo crucial para el progreso de la investigación clínica. En otro orden de cosas, la forma tradicional de realizar los estudios clínicos con dispositivos cardiacos implantables precisaba mejorar el tratamiento de los datos almacenados por estos dispositivos, así como para su fusión con los datos clínicos recopilados por investigadores y pacientes. La justificación de este trabajo de investigación se basa en la necesidad de mejorar la eficiencia en la investigación clínica con dispositivos cardiacos implantables, mediante la reducción de costes y tiempos de desarrollo de los proyectos, y el incremento de la calidad de los datos recopilados y el diseño de soluciones que permitan obtener un mayor rendimiento de los datos mediante la fusión de datos de distintas fuentes o estudios. Con este fin se proponen como objetivos específicos de este proyecto de investigación dos nuevos modelos: - Un modelo de recuperación y procesamiento de datos para los estudios clínicos con dispositivos cardiacos implantables, que permita estructurar y estandarizar estos procedimientos, con el fin de reducir tiempos de desarrollo Modelos de Métrica para Sistemas Electrónicos de Adquisición de Datos y de Procesamiento para Investigación Clínica con Dispositivos Cardiacos Implantables de estas tareas, mejorar la calidad del resultado obtenido, disminuyendo en consecuencia los costes. - Un modelo de métrica integrado en un Sistema Electrónico de Adquisición de Datos (EDC) que permita analizar los resultados del proyecto de investigación y, particularmente del rendimiento obtenido del EDC, con el fin de perfeccionar estos sistemas y reducir tiempos y costes de desarrollo del proyecto y mejorar la calidad de los datos clínicos recopilados. Como resultado de esta investigación, el modelo de procesamiento propuesto ha permitido reducir el tiempo medio de procesamiento de los datos en más de un 90%, los costes derivados del mismo en más de un 85% y todo ello, gracias a la automatización de la extracción y almacenamiento de los datos, consiguiendo una mejora de la calidad de los mismos. Por otro lado, el modelo de métrica posibilita el análisis descriptivo detallado de distintos indicadores que caracterizan el rendimiento del proyecto de investigación clínica, haciendo factible además la comparación entre distintos estudios. La conclusión de esta tesis doctoral es que los resultados obtenidos han demostrado que la utilización en estudios clínicos reales de los dos modelos desarrollados ha conducido a una mejora en la eficiencia de los proyectos, reduciendo los costes globales de los mismos, disminuyendo los tiempos de ejecución, e incrementando la calidad de los datos recopilados. Las principales aportaciones de este trabajo de investigación al conocimiento científico son la implementación de un sistema de procesamiento inteligente de los datos almacenados por los dispositivos cardiacos implantables, la integración en el mismo de una base de datos global y optimizada para todos los modelos de dispositivos, la generación automatizada de un repositorio unificado de datos clínicos y datos de dispositivos cardiacos implantables, y el diseño de una métrica aplicada e integrable en los sistemas electrónicos de adquisición de datos para el análisis de resultados de rendimiento de los proyectos de investigación clínica. ABSTRACT Cardiovascular diseases are the main cause of death worldwide and it is expected to continue in the future, generating high costs for health care systems. Implantable cardiac devices have become one of the options for diagnosis and treatment of cardiac rhythm disorders. Clinical research with these devices has acquired great importance to fight against these diseases that affect so many people in our society. Both pharmaceutical and medical technology companies, and also investigators, are involved in an increasingly number of clinical research projects. The growth in volume and the increase in medical research complexity are contributing to raise the expenditure level associated with clinical investigation. This situation is driving health care sector companies to explore new solutions to reduce clinical trial costs. Information and Communication Technologies have facilitated clinical research, mainly in the last decade. Electronic systems and software applications have provided new possibilities in the acquisition, processing and analysis of clinical studies data. On the other hand, web technology contributed to the appearance of the first electronic data capture systems that have evolved during the last years. Nevertheless, improvement of these systems is still a key aspect for the progress of clinical research. On a different matter, the traditional way to develop clinical studies with implantable cardiac devices needed an improvement in the processing of the data stored by these devices, and also in the merging of these data with the data collected by investigators and patients. The rationale of this research is based on the need to improve the efficiency in clinical investigation with implantable cardiac devices, by means of reduction in costs and time of projects development, as well as improvement in the quality of information obtained from the studies and to obtain better performance of data through the merging of data from different sources or trials. The objective of this research project is to develop the next two models: • A model for the retrieval and processing of data for clinical studies with implantable cardiac devices, enabling structure and standardization of these procedures, in order to reduce the time of development of these tasks, to improve the quality of the results, diminish therefore costs. • A model of metric integrated in an Electronic Data Capture system (EDC) that allow to analyze the results of the research project, and particularly the EDC performance, in order to improve those systems and to reduce time and costs of the project, and to get a better quality of the collected clinical data. As a result of this work, the proposed processing model has led to a reduction of the average time for data processing by more than 90 per cent, of related costs by more than 85 per cent, and all of this, through automatic data retrieval and storage, achieving an improvement of quality of data. On the other hand, the model of metrics makes possible a detailed descriptive analysis of a set of indicators that characterize the performance of each research project, allowing inter‐studies comparison. This doctoral thesis results have demonstrated that the application of the two developed models in real clinical trials has led to an improvement in projects efficiency, reducing global costs, diminishing time in execution, and increasing quality of data collected. The main contributions to scientific knowledge of this research work are the implementation of an intelligent processing system for data stored by implantable cardiac devices, the integration in this system of a global and optimized database for all models of devices, the automatic creation of an unified repository of clinical data and data stored by medical devices, and the design of a metric to be applied and integrated in electronic data capture systems to analyze the performance results of clinical research projects.
Resumo:
Los conjuntos bacterianos son sistemas dinámicos difíciles de modelar debido a que las bacterias colaboran e intercambian información entre sí. Estos microorganismos procariotas pueden tomar decisiones por mayoría e intercambiar información genética importante que, por ejemplo, las haga resistentes a un antibiótico. El proceso de conjugación consiste en el intercambio de un plásmido de una bacteria con otra, permitiendo así que se transfieran propiedades. Estudios recientes han demostrado que estos plásmidos pueden ser reprogramados artificialmente para que la bacteria que lo contenga realice una función específica [1]. Entre la multitud de aplicaciones que supone esta idea, el proyecto europeo PLASWIRES está intentando demostrar que es posible usar organismos vivos como computadores distribuidos en paralelo y plásmidos como conexión entre ellos mediante conjugación. Por tanto, mediante una correcta programación de un plásmido, se puede conseguir, por ejemplo, hacer que una colonia de bacterias haga la función de un antibiótico o detecte otros plásmidos peligrosos en bacterias virulentas. El proceso experimental para demostrar esta idea puede llegar a ser algo lento y tedioso, por lo que es necesario el uso de simuladores que predigan su comportamiento. Debido a que el proyecto PLASWIRES se basa en la conjugación bacteriana, surge la necesidad de un simulador que reproduzca esta operación. El presente trabajo surge debido a la deficiencia del simulador GRO para reproducir la conjugación. En este documento se detallan las modificaciones necesarias para que GRO pueda representar este proceso, así como analizar los datos obtenidos e intentar ajustar el modelo a los datos obtenidos por el Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC). ---ABSTRACT---Bacterial colonies are dynamical systems difficult to model because bacteria collaborate and exchange information with each other. These prokaryotic organisms can make decisions by majority and exchange important genetic information, for example, make them resistant to an antibiotic. The conjugation process is the exchange of a plasmid from one bacterium to another, allowing both to have the same properties. Recent studies have shown that these plasmids can be artificially reprogrammed to make the bacteria that contain it to perform a specific function [1]. Among the multitude of applications involved in this idea, the European project PLASWIRES is attempting to prove that it is possible to use living organisms as parallel and distributed computers with plasmids acting as connectors between them through conjugation. Thus, by properly programming a plasmid, you can get a colony of bacteria that work as an antibiotic or detect hazardous plasmids in virulent bacteria. The experimental process to prove this idea can be slow and tedious, so the use of simulators to predict their behavior is required. Since PLASWIRES project is based on bacterial conjugation, a simulator that can reproduce this operation is required. This work arises due to the absence of the conjugation process in the simulator GRO. This document details the changes made to GRO to represent this process, analyze the data and try to adjust the model to the data obtained by the Institute of Biomedicine and Biotechnology of Cantabria ( IBBTEC ). This project has two main objectives, the first is to add the functionality of intercellular communication by conjugation to the simulator GRO, and the second is to use the experimental data obtained by the IBBTEC. To do this, the following points should be followed: • Study of conjugation biology as a mechanism of intercellular communication. • Design and implementation of the algorithm that simulates conjugation. • Experimental validation and model adjust to the experimental data on rates of conjugation and bacterial growth.
Resumo:
Los nanomateriales han adquirido recientemente un gran interés debido a la gran variedad de aplicaciones que pueden llegar a tener en el ámbito de la biomedicina. Este trabajo recoge las posibilidades tanto diagnósticas como terapéuticas que presentan dos modalidades de nanomateriales: nanopartículas de óxido de hierro y nanopartículas de oro. Para ello, en una primera aproximación se ha llevado a cabo la caracterización de las nanopartículas desde el punto de vista de la biocompatibilidad asociada a su tamaño y al tiempo de contacto o circulación en células y tejidos, ensayada tanto in vitro como in vivo así como la cinética de acumulación de dichas nanopartículas en el organismo vivo. Posteriormente se ha realizado la biofuncionalización de los dos tipos de nanopartículas para reconocer dianas moleculares específicas y poder ser utilizadas en el futuro en dos aplicaciones biomédicas diferentes: diagnóstico de enfermedad de Alzheimer mediante imagen de resonancia magnética y destrucción selectiva de células tumorales mediante hipertermia óptica. ABSTRACT Nanomaterials have recently gained a great interest due to the variety of applications that can have in the field of biomedicine. This work covers both diagnostic and therapeutic possibilities that present two types of nanomaterials: iron oxide nanoparticles and gold nanoparticles. Therefore, in a first approximation it has performed the characterizing of nanoparticles from the standpoint of biocompatibility associated with their size and time of contact or movement in cells and tissues, tested both in vitro and in vivo as well as the kinetics of accumulation of the nanoparticles into the living organism. Subsequently the biofunctionalization of two types of nanoparticles was made to recognize specific molecular targets and can be used in the future in two different biomedical applications: diagnosis of Alzheimer's disease by magnetic resonance imaging and selective destruction of tumor cells by optical hyperthermia.
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.
Resumo:
La nanotecnología es el estudio que la mayoría de veces es tomada como una meta tecnológica que nos ayuda en el área de investigación para tratar con la manipulación y el control en forma precisa de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. Recordando que el prefijo nano proviene del griego vavoc que significa enano y corresponde a un factor de 10^-9, que aplicada a las unidades de longitud corresponde a una mil millonésima parte de un metro. Ahora sabemos que esta ciencia permite trabajar con estructuras moleculares y sus átomos, obteniendo materiales que exhiben fenómenos físicos, químicos y biológicos, muy distintos a los que manifiestan los materiales usados con una longitud mayor. Por ejemplo en medicina, los compuestos manométricos y los materiales nano estructurados muchas veces ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, ya que muchas veces llegan a combinar los antiguos compuestos con estos nuevos para crear nuevas terapias e inclusive han llegado a reemplazarlos, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales y, por tanto, cualquier flujo de trabajo en nano medicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Muchos investigadores en la nanotecnología están buscando la manera de obtener información acerca de estos materiales nanométricos, para mejorar sus estudios que muchas veces lleva a probar estos métodos o crear nuevos compuestos para ayudar a la medicina actual, contra las enfermedades más poderosas como el cáncer. Pero en estos días es muy difícil encontrar una herramienta que les brinde la información específica que buscan en los miles de ensayos clínicos que se suben diariamente en la web. Actualmente, la informática biomédica trata de proporcionar el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, en este contexto, la nueva área de la nano informática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Otro caso en la actualidad es que muchos investigadores de biomedicina desean saber y comparar la información dentro de los ensayos clínicos que contiene temas de nanotecnología en las diferentes paginas en la web por todo el mundo, obteniendo en si ensayos clínicos que se han creado en Norte América, y ensayos clínicos que se han creado en Europa, y saber si en este tiempo este campo realmente está siendo explotado en los dos continentes. El problema es que no se ha creado una herramienta que estime un valor aproximado para saber los porcentajes del total de ensayos clínicos que se han creado en estas páginas web. En esta tesis de fin de máster, el autor utiliza un mejorado pre-procesamiento de texto y un algoritmo que fue determinado como el mejor procesamiento de texto en una tesis doctoral, que incluyo algunas pruebas con muchos de estos para obtener una estimación cercana que ayudaba a diferenciar cuando un ensayo clínico contiene información sobre nanotecnología y cuando no. En otras palabras aplicar un análisis de la literatura científica y de los registros de ensayos clínicos disponibles en los dos continentes para extraer información relevante sobre experimentos y resultados en nano medicina (patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.), seguido el mecanismo de procesamiento para estructurar y analizar dicha información automáticamente. Este análisis concluye con la estimación antes mencionada necesaria para comparar la cantidad de estudios sobre nanotecnología en estos dos continentes. Obviamente usamos un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento anotados manualmente—, y el conjunto de datos para el test es toda la base de datos de estos registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nano drogas, nano dispositivos y nano métodos de aquellos enfocados a testear productos farmacéuticos tradicionales.---ABSTRACT---Nanotechnology is the scientific study that usually is seen as a technological goal that helps us in the investigation field to deal with the manipulation and precise control of the matter with dimensions that range from 1 to 100 nanometers. Remembering that the prefix nano comes from the Greek word νᾶνος, meaning dwarf and denotes a factor of 10^-9, that applyied the longitude units is equal to a billionth of a meter. Now we know that this science allows us to work with molecular structures and their atoms, obtaining material that exhibit physical, chemical and biological phenomena very different to those manifesting in materials with a bigger longitude. As an example in medicine, the nanometric compounds and the materials in nano structures are often offered with more effectiveness regarding to the traditional chemical formulas. This is due to the fact that many occasions combining these old compounds with the new ones, creates new therapies and even replaced them, reveling new diagnostic and therapeutic properties. Even though the complexity of the information at nano level is greater than that in conventional biologic level and, thus, any work flow in nano medicine requires, in an inherent way, advance information management strategies. Many researchers in nanotechnology are looking for a way to obtain information about these nanometric materials to improve their studies that leads in many occasions to prove these methods or to create a new compound that helps modern medicine against powerful diseases, such as cancer. But in these days it is difficult to find a tool that searches and provides a specific information in the thousands of clinic essays that are uploaded daily on the web. Currently, the bio medic informatics tries to provide the work frame that will allow to deal with these information challenge in nano level. In this context, the new area of nano informatics pretends to detect and establish the existing links between medicine, nanotechnology and informatics, encouraging the usage of computational methods to resolve questions and problems that surge with the wide information intersection that is between biomedicine and nanotechnology. Another present case, is that many biomedicine researchers want to know and be able to compare the information inside those clinic essays that contains subjects of nanotechnology on the different webpages across the world, obtaining the clinic essays that has been done in North America and the essays done in Europe, and thus knowing if in this time, this field is really being exploited in both continents. In this master thesis, the author will use an enhanced text pre-processor with an algorithm that was defined as the best text processor in a doctoral thesis, that included many of these tests to obtain a close estimation that helps to differentiate when a clinic essay contains information about nanotechnology and when it does not. In other words, applying an analysis to the scientific literature and clinic essay available in both continents, in order to extract relevant information about experiments and the results in nano-medicine (textual patterns, common vocabulary, experiments descriptors, characterization parameters, etc.), followed by the mechanism process to structure and analyze said information automatically. This analysis concludes with the estimation, mentioned before, needed to compare the quantity of studies about nanotechnology in these two continents. Obviously we use a data reference model (Gold standard) – a set of training data manually annotated –, and the set of data for the test conforms the entire database of these clinic essay registers, allowing to distinguish automatically the studies centered on nano drugs, nano devices and nano methods of those focus on testing traditional pharmaceutical products.